National Latino AIDS Awareness Day - October 15, 2010

October 15, 2010, is National Latino AIDS Awareness Day, which seeks to raise awareness of the disproportionate impact of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) on the Hispanic/ Latino population in the United States and to encourage prevention measures, such as HIV testing. Estimates of HIV incidence for 2006 indicated that Hispanics had a rate of 29.3 per 100,000 population, compared with 11.5 for whites (1). A goal of the National HIV/AIDS Strategy is to reduce disparities in HIV infection (2).

In 2006, male-to-male sexual contact was associated with an estimated 55% of new infections among all Hispanics and an estimated 72% of new infections among Hispanic males (3). Among Hispanic females, high-risk heterosexual contact was associated with an estimated 83% of new infections (3). Data from CDC's National HIV Behavioral Surveillance System show that, in 2008, 46\% of HIV-infected Hispanic men who have sex with men (MSM) did not know they were infected, compared with 26% of white MSM (4).

Additional information about National Latino AIDS Awareness Day is available at http://www.cdc.gov/features/ latinoaidsawareness. Information about CDC activities and HIV resources is available at http://www.cdc.gov/ hiv/hispanics.

References

1. Hall HI, Song R, Rhodes P, et al. Estimation of HIV incidence in the United States. JAMA 2008;300:520-9.
2. Office of National AIDS Policy. National HIV/AIDS Strategy. Washington, DC: Office of National AIDS Policy; 2010. Available at http://www.whitehouse.gov/onap. Accessed October 5, 2010.
3. CDC. Subpopulation estimates from the HIV incidence surveillance system—United States, 2006. MMWR 2008;57:985-9.
4. CDC. Prevalence and awareness of HIV infection among men who have sex with men-21 cities, United States, 2008. MMWR 2010;59:1201-7.

Estimated Lifetime Risk for Diagnosis of HIV Infection Among Hispanics/Latinos - 37 States and Puerto Rico, 2007

In 2008, the annual rate of diagnosis with human immunodeficiency virus (HIV) infection in the United States for Hispanics/Latinos (25.0 per 100,000 population) was approximately three times that for whites (8.2) (1). To calculate the estimated lifetime risk (ELR) and age-conditional risk for diagnosis of HIV infection among Hispanics/Latinos in 37 states and Puerto Rico, CDC analyzed HIV surveillance data, vital statistics data on general and HIV-specific mortality, and U.S. census data from 2007. The results of those analyses indicated that an estimated 1.92% (one in 52) of Hispanics/Latinos would receive HIV diagnoses during their lifetimes, compared with an ELR for HIV diagnosis of 0.59% (one in 170) for whites and 4.65% (one in 22) for blacks/African Americans. Among Hispanics/Latinos, those aged 35 years had the greatest risk for HIV diagnosis (males: 0.77% and females: 0.24%) during the next 10 years. Reducing HIV risk behaviors and increasing access to testing and care are important to decrease the number of diagnoses of HIV infection among disproportionately affected population groups.

To estimate lifetime risk and age-conditional risk, the number of HIV diagnoses in 2007 for persons in Puerto Rico and the

INSIDE

1302 Tetanus and Pertussis Vaccination Coverage Among Adults Aged ≥ 18 Years - United States, 1999 and 2008
1307 Progress Toward Control of Rubella and Prevention of Congenital Rubella Syndrome - Worldwide, 2009
1311 Announcements
1312 QuickStats

37 states with name-based HIV reporting since 2005* were obtained from the national HIV surveillance system. General and HIV-specific mortality data were obtained from death certificates from the 37 states and Puerto Rico for 2007. Population data for the 37 states were based on official postcensus estimates for 2007 from the U.S. Census Bureau (2). Because the postcensus estimates were not available for Puerto Rico by race/ethnicity, the 2000 census summary file was used to impute postcensus population estimates for Puerto Rico by race/ethnicity. Lifetime risk and age-conditional risk for HIV diagnosis were computed using statistical software (3) that can estimate the probabilities of acquiring a disease through analysis of population-based surveillance information. Lifetime risk modeling was based on a hypothetical cohort of 10 million live births, and probability estimates were derived for each 5-year age group in the cohort. The inverse of lifetime risk yields an estimate for the number of persons who would need to be followed

[^0]throughout the specified life years to observe one HIV diagnosis (with smaller numbers indicating more likely diagnosis with HIV). For age-conditional risk, the percentage of HIV-uninfected persons aged 20-50 years expected to receive a diagnosis of HIV infection during the next 10 years was calculated at 5 -year age intervals. HIV surveillance data were statistically adjusted to account for reporting delay (1).

In 2007, an estimated 41,611 persons received HIV diagnoses in the 37 states and Puerto Rico, of whom 8,411 (20.2\%) were Hispanics/Latinos (Table 1). Overall, ELR for HIV diagnosis among Hispanics/Latinos was 1.92%, compared with 4.65\% for blacks/African Americans, 1.86% for Native Hawaiians/Other Pacific Islanders, 0.76% for American Indians/Alaska Natives, 0.59% for whites, and 0.45% for Asians (Table 1). Among Hispanics/ Latinos in Puerto Rico, ELR was 2.08%, whereas, among those in the 37 states, ELR was 1.90%.

By sex, ELR for HIV diagnosis was 2.80\% (one in 36) among Hispanic/Latino males and 0.94% (one in 106) among Hispanic/Latino females (Table 1). ELR for white males and females was 0.98% and 0.19%, respectively. Among Hispanics/Latinos, ELR for both males and females increased slowly from ages $10-14$ to

[^1]TABLE 1. Estimated lifetime risk for HIV diagnosis, by race/ethnicity and sex - 37 states and Puerto Rico, 2007

Race/Ethnicity*	Male			Female			Total		
	Risk (\%)	(95\% CI)	Estimated HIV diagnoses in 2007	Risk (\%)	(95\% CI)	Estimated HIV diagnoses in 2007	Risk (\%)	(95\% CI)	Estimated HIV diagnoses in 2007
Total ${ }^{\dagger}$	1.98	(1.95-2.00)	30,789	0.72	(0.71-0.73)	10,822	1.36	(1.35-1.37)	41,611
American Indian/Alaska Native	1.00	(0.84-1.29)	140	0.46	(0.35-0.67)	65	0.76	(0.65-0.91)	205
Asian	0.69	(0.61-0.88)	336	0.19	(0.15-0.33)	94	0.45	(0.40-0.54)	430
Black/African American	6.27	(6.17-6.38)	13,337	3.09	(3.02-3.17)	6,810	4.65	(4.59-4.71)	20,147
Hispanic/Latino	2.80	(2.73-2.88)	6,533	0.94	(0.90-0.99)	1,878	1.92	(1.88-1.97)	8,411
Native Hawaiian/Other Pacific Islander	3.06	(2.00-32.67)	35	0.55	(0.13-16.13)	5	1.86	(1.24-12.71)	40
White	0.98	(0.96-1.00)	10,107	0.19	(0.18-0.19)	1,855	0.59	(0.58-0.60)	11,962

Abbreviations: $\mathrm{Cl}=$ confidence interval; HIV = human immunodeficiency virus.

* Racial populations are all non-Hispanic. Hispanics/Latinos might be of any race.
${ }^{\dagger}$ Includes persons of multiple races.

15-19 years, then increased more rapidly, but steadily, until approximately ages 50-54 years, when the rate of increase began to slow, leveling off at approximately ages 65-69 years. ELR for males was greater than that for females in every age group (Figure).

Among Hispanic/Latino males and females aged $20-50$ years, calculations at 5 -year intervals indicated that those who were HIV-uninfected at age 35 years had the greatest risk for HIV diagnosis in the next 10 years (males: 0.77% and females: 0.24%). The next greatest risks were among HIV-uninfected males at age 30 years (0.74%) and HIV-uninfected females at age 40 years (0.24%) (Table 2).

Reported by

WK Adih, MD, X Hu, MS, ML Campsmith, DDS, L Espinoza, DDS, HI Hall, PhD, Div of HIVIAIDS Prevention, National Center for HIVIAIDS, Viral Hepatitis, STD, and TB Prevention, CDC.

Editorial Note

The findings in this report reflect the disproportionate ELR for diagnosis of HIV infection among Hispanics/Latinos, compared with whites, and is consistent with other analyses of surveillance data (1). The ELR for HIV diagnosis for Hispanics/Latinos was approximately three times that for whites and, among racial/ethnic populations, was greater than all populations except blacks/African Americans. By sex, ELR for Hispanic/Latino males and females was three times and five times that for white males and females, respectively, confirming a previous analysis of data from 33 states (4). The greater ELR for HIV diagnosis for Hispanic/Latino males compared with females likely resulted from the high number of HIV diagnoses among Hispanic/Latino men who have sex with men (1).

Multiple factors might contribute to the disproportionate ELR for HIV diagnosis among Hispanics/ Latinos, compared with whites. Migration (both within and across national borders) in search of work might contribute to increased HIV risk behaviors; change in residence can result in loneliness, isolation, and disruption of social, familial, and sexual relationships (5). These factors can lead to new sex partners, illegal drug use, and inadequate access to health-care services. Poverty, culture, limited use of English, and immigration status also represent barriers to obtaining information about HIV prevention (5). Lack of awareness regarding the risk for HIV infection also might be a factor affecting risk behaviors among some Hispanics/Latinos (6).

The findings in this report are subject to at least three limitations. First, the estimates of HIV diagnoses are from 37 states and Puerto Rico and thus do not represent all HIV diagnoses in the United States. HIV surveillance data from several high-morbidity areas with sizeable Hispanic/Latino populations (e.g., California) are not yet available; inclusion of such data in the future will provide a more complete and accurate analysis of the epidemiology of HIV for Hispanics/Latinos. Second, potential exists for racial/ethnic misclassification in the surveillance and mortality data, with some Hispanics/Latinos classified as white (7). Such misclassification can attenuate the actual differences by race/ethnicity. Finally, the statistical adjustment procedures applied to HIV surveillance data to account for reporting delay are subject to a degree of uncertainty (1), which could result in overadjustment or underadjustment of the data. However, this uncertainty would be applied across race/ethnicity categories and would not affect data for Hispanics/Latinos disproportionately.

FIGURE. Estimated lifetime risk for HIV diagnosis among Hispanics/Latinos, by age group and sex - 37 states and Puerto Rico, 2007

Abbreviation: HIV = human immunodeficiency virus.

TABLE 2. Estimated 10-year age-conditional risk for HIV diagnosis among HIV-uninfected Hispanic/Latino males and females aged 20-50 years - 37 states and Puerto Rico, 2007

Sex	At age 20 yrs		At age 25 yrs		At age 30 yrs		At age 35 yrs		At age 40 yrs		At age 45yrs		At age 50 yrs	
	Risk (\%)	(95\% CI)												
Male	0.65	(0.59-0.68)	0.71	(0.68-0.74)	0.74	(0.71-0.77)	0.77	(0.74-0.80)	0.71	(0.68-0.75)	0.61	(0.58-0.65)	0.47	(0.43-0.50)
Female	0.18	(0.17-0.20)	0.20	(0.18-0.21)	0.22	(0.20-0.24)	0.24	(0.22-0.26)	0.24	(0.21-0.26)	0.22	(0.20-0.24)	0.18	(0.16-0.20)

Abbreviations: $\mathrm{Cl}=$ confidence interval; $\mathrm{HIV}=$ human immunodeficiency virus.

CDC is engaged in a wide range of activities to reduce the disparity in HIV diagnoses among minority populations, including Hispanics/Latinos. CDC has adapted its evidence-based HIV behavioral interventions from the Diffusion of Effective Behavioral Interventions project (8) for Hispanics/Latinos; an example is VOICES/VOCES, a video-based intervention designed to increase condom use among heterosexual black/African American and Hispanic/ Latino men who visit STD clinics. ${ }^{\dagger}$ Another program, Popular Opinion Leader (POL), identifies, enlists, and trains key opinion leaders to encourage safer sex norms and behaviors among young Hispanic/Latino

[^2]migrant men who have sex with men. ${ }^{\S}$ In 2009, CDC launched a communication campaign, Act Against AIDS, to address complacency, lack of knowledge, and misperceptions about HIV and AIDS in the United States (9). Many of the resources and messages in the campaign are available in Spanish, with electronic and print media campaigns currently under way in several cities with large Hispanic/Latino populations.

The National HIV/AIDS Strategy (10) calls for increased focus on interventions for Hispanics/ Latinos, such as culturally and linguistically appropriate interventions that include effective communication

[^3]
What is already known on this topic?

In the United States, Hispanics/Latinos are disproportionately impacted by human immunodeficiency virus (HIV) compared with whites.
What is added by this report?
Data from 37 states and Puerto Rico indicated that an estimated 1.92% (one in 52) of Hispanics/Latinos would receive HIV diagnoses during their lifetimes, approximately three times the lifetime risk for whites. Among Hispanics/Latinos, those aged 35 years had the greatest risk for a diagnosis of HIV infection during the next 10 years.
What are the implications for public health practice?
Culturally and linguistically appropriate interventions, including effective communication strategies and expansion of access to testing and care services, are necessary to reduce the disproportionate impact of HIV infection among Hispanics/Latinos.
strategies, expansion of HIV testing and diagnosis, and improved access to prevention, care, and treatment services to reduce the number of new HIV infections. The goal is to lower ELR for HIV diagnosis and reduce the disproportionate impact of HIV in the Hispanic/Latino population.

References

1. CDC. Diagnoses of HIV infection and AIDS in the United States and dependent areas, 2008: HIV surveillance report, volume 20. Atlanta, GA: US Department of Health and Human Services, CDC; 2010. Available at http://www.cdc. gov/hiv/surveillance/resources/reports/2008report/index. htm. Accessed October 8, 2010.
2. US Census Bureau. Population estimates. Available at http://www. census.gov/popest/estimates.php. Accessed October 8, 2010.
3. National Cancer Institute. DevCan: probability of developing or dying of cancer. Bethesda, MD: National Institutes of Health, National Cancer Institute; 2010. Available at http:// www.srab.cancer.gov/devcan. Accessed October 8, 2010.
4. Hall HI, An Q, Hutchinson AB, Sansom S. Estimating the lifetime risk of a diagnosis of the HIV infection in 33 states, 2004-2005. J Acquir Immune Defic Syndr 2008;49:294-7.
5. Organista KC, Carrillo H, Ayala G. HIV prevention with Mexican migrants: review, critique, and recommendations. J Acquir Immune Defic Syndr 2004;37(suppl 4):S227-39.
6. Shedlin MG, Decena CU, Oliver-Velez D. Initial acculturation and HIV risk among new Hispanic immigrants. J Natl Med Assoc 2005;97(7 Suppl):32-7S.
7. Swallen KC, West DW, Stewart SL. et al. Predictors of misclassification of Hispanic ethnicity in a population-based cancer registry. Ann Epidemiol 1997;7:200-6.
8. CDC. 2009 compendium of evidence-based HIV prevention interventions. Atlanta, GA: US Department of Health and Human Services, CDC; 2009. Available at http://www.cdc. gov/hiv/topics/research/prs/evidence-based-interventions. htm. Accessed October 8, 2010.
9. CDC. Act against AIDS. Atlanta, GA: US Department of Health and Human Services, CDC; 2010. Available at http:// www.nineandahalfminutes.org. Accessed October 8, 2010.
10. Office of National AIDS Policy. National HIV/AIDS strategy. Washington, DC: Office of National AIDS Policy; 2010. Available at http://www.whitehouse.gov/onap. Accessed October 8, 2010.

Tetanus and Pertussis Vaccination Coverage Among Adults Aged ≥ 18 Years - United States, 1999 and 2008

In 2005, the Advisory Committee on Immunization Practices (ACIP) recommended that the newly licensed tetanus, diphtheria, and acellular pertussis (Tdap) vaccine replace a single decennial dose of tetanus diphtheria (Td) vaccine for persons aged 10-64 years. According to these recommendations, Tdap may be used to protect against pertussis even when <10 years have passed since the most recent tetanus vaccination. For adults with infant contact and healthcare personnel (HCP) with direct patient contact (two groups at increased risk for transmitting pertussis to those who are most susceptible), the single recommended Tdap dose is suggested to be administered as soon as 2 years after the last tetanus vaccination (1). To assess changes in tetanus vaccination coverage and the use of Tdap among U.S. adults, CDC analyzed data from the National Health Interview Survey (NHIS) for 1999 and 2008. This report summarizes the results of that analysis, which indicated that selfreported tetanus vaccination coverage (vaccination within the preceding 10 years) was 60.4% in 1999 and 61.6% in 2008. Among adults aged 18-64 years, Tdap coverage was estimated to be 5.9% in 2008. Of those who reported receiving a tetanus vaccination during 2005-2008, 52.0\% reported receiving Tdap. Tdap vaccination coverage among adults with infant contact was 5.0% and among HCP was 15.9%. Of those adults with infant contact and HCP who had received a tetanus vaccination during 2005-2008, 60.0% and 60.3% reported receiving Tdap, respectively. Health-care providers should recommend Tdap vaccination to adults aged 18-64 years whose most recent tetanus vaccination was ≥ 10 years prior; the interval for HCP and persons with infant contact can be as short as 2 years.

During 1999 and 2008, years for which tetanus vaccination information was available, the NHIS adult core questionnaire was administered by inperson interview and included 30,801 adults in 1999 and 21,781 adults in 2008 from the noninstitutionalized U.S. civilian population. Respondents were selected by a random probability sample. HCP were defined by employment in a health-care occupation or industry setting, as determined by standard occupation and industry codes. Persons with infant contact
were defined as those living in a household with at least one infant aged <1 year. The overall response rates for the adult core questionnaires were 69.6% in 1999 and 62.6% in 2008 (2). The analysis accounted for the complex survey design, and all proportions described in this report are weighted. Statistical differences were determined using the Wald chi-square test ($\mathrm{p}<0.05$, two-tailed).

To determine tetanus vaccination status, survey respondents in both years were asked "Have you received a tetanus shot in the past 10 years?" Persons without a "yes" or "no" response (e.g., missing, refused, or "don't know") ($\mathrm{n}=1,912$ [6.2\%] in 1999; $\mathrm{n}=1,301[6.0 \%]$ in 2008) were excluded, yielding a sample size of 28,889 for 1999 and 20,480 for 2008 for questions regarding tetanus vaccination.

Because Tdap was not available in 1999 and is not recommended for persons aged ≥ 65 years, only 2008 data were analyzed to assess Tdap use, and 4,444 of the original 21,781 respondents were excluded from this analysis on the basis of age. Persons who answered "yes" to the question "Have you received a tetanus shot since 2005?" were subsequently asked "Did your most recent tetanus shot (since 2005) contain a pertussis component?" Among 17,337 respondents aged 18-64 years, those without a "yes" or "no" classification for tetanus vaccination status within the preceding 10 years ($\mathrm{n}=966$ [5.6\%]), for tetanus vaccination status during 2005-2008 ($\mathrm{n}=359$ [2.1\%]), or for Tdap status during 2005-2008 ($\mathrm{n}=3,189$ [18.4\%]) were excluded, yielding a sample of 12,823 respondents aged 18-64 years for whom Tdap vaccination status could be assessed.

To estimate the proportion of all tetanus vaccinations for which Tdap was administered, and to examine the degree to which respondents were able to recall vaccination type (Tdap or Td), additional analyses were conducted among respondents who received a tetanus vaccination during 2005-2008.

Overall, self-reported tetanus vaccination (within the preceding 10 years) coverage was similar in 1999 (60.4%) compared with 2008 (61.6\%) (Table 1). However, coverage decreased among persons aged 18-24 years from 1999 to 2008 (-5.2 percentage points) but increased among persons aged 50-64 years

TABLE 1. Self-reported tetanus vaccination coverage among persons aged ≥ 18 years, by selected characteristics — National Health Interview Survey, United States, 1999 and 2008*

Characteristic	Tetanus vaccination within preceding 10 yrs(1999)				Tetanus vaccination within preceding 10 yrs (2008)				\% point change	
	No. in sample ${ }^{\text {§§ }}$	\%	Vaccination coverage		No. in sample ${ }^{\text {§§ }}$	\%	Vaccination coverage			
			\%	(95\% CI)			\%	(95\% CI)	1999 to 2008	p value ${ }^{\text {® }}$
Total	28,889	100.0	60.4	(59.7-61.2)	20,480	100.0	61.6	(60.6-62.5)	1.2	0.07
Age group (yrs)										
18-24	2,998	13.0	75.5	(73.6-77.4)	1,973	12.8	70.3	(67.7-72.8)	-5.2	<0.01
25-49	14,518	51.0	63.8	(62.9-64.8)	9,395	46.2	62.2	(60.8-63.5)	-1.6	>0.05
50-64	5,854	19.7	56.7	(55.2-58.2)	5,003	24.5	62.4	(60.8-64.0)	5.7	<0.01
65-74	2,925	8.9	45.8	(43.7-47.9)	2,140	8.8	56.0	(53.5-58.5)	10.2	<0.01
≥ 75	2,594	7.4	37.0	(34.7-39.4)	1,969	7.7	47.1	(44.4-49.8)	10.1	<0.01
Sex										
Male	12,474	47.9	66.1	(65.1-67.1)	8,961	48.3	65.1	(63.7-66.4)	-1.0	0.24
Female	16,415	52.1	55.2	(54.2-56.1)	11,519	51.7	58.3	(57.1-59.5)	3.1	<0.01
Race/Ethnicity										
White, non-Hispanic	19,324	74.7	63.3	(62.4-64.1)	12,483	69.1	65.7	(64.6-66.9)	2.4	<0.01
Black, non-Hispanic	4,008	11.3	53.7	(51.6-55.9)	3,214	11.8	53.7	(51.4-56.0)	0.0	0.99
Hispanic	3,564	7.7	48.4	(45.7-51.1)	1,961	7.9	50.6	(47.6-53.5)	2.2	0.30
Other	1,965	6.3	53.4	(50.6-56.1)	2,822	11.2	51.9	(49.4-54.4)	-1.5	0.44
Poverty status										
At or above poverty level	19,358	89.5	63.2	(62.3-64.0)	14,640	87.5	63.5	(62.5-64.5)	0.3	0.61
Below poverty level	3,314	10.6	57.3	(54.7-59.8)	2,812	12.5	56.7	(53.8-59.6)	-0.6	0.78
Education										
Some college	14,330	51.8	65.5	(64.6-66.5)	11,332	56.9	65.9	(64.7-67.0)	0.4	0.68
High school diploma or less	14,373	48.2	55.1	(53.9-56.2)	9,027	43.1	56.2	(54.8-57.5)	1.1	0.22
Saw health-care provider in past 12 mos										
Yes	23,548	81.0	62.3	(61.5-63.1)	17,005	81.7	64.0	(63.0-65.0)	1.7	0.01
No	5,341	19.0	52.0	(50.1-53.8)	3,475	18.3	49.7	(47.5-51.9)	-2.3	0.12
Health insurance status										
Any public**	7,324	21.4	47.4	(46.0-48.7)	6,067	25.2	54.7	(53.1-56.3)	7.3	<0.01
Private or military	16,975	64.2	65.5	(64.6-66.4)	10,951	58.3	66.6	(65.4-67.7)	1.1	0.16
No insurance	4,516	14.5	56.6	(54.7-58.4)	3,411	16.5	54.3	(52.2-56.4)	-2.3	0.12
Influenza vaccination in past 12 mos										
Yes	8,314	27.9	64.4	(63.1-65.6)	6,919	32.4	68.9	(67.6-70.3)	4.5	<0.01
No	20,515	72.1	58.9	(58.0-59.8)	13,513	67.6	58.0	(56.9-59.2)	-0.9	0.24

Abbreviation: $\mathrm{Cl}=$ confidence interval.

* Excludes 1,912 respondents (1999) and 1,301 respondents (2008) whose tetanus vaccination status was missing or who answered "don't know."
\dagger Unweighted sample size; percentages and confidence intervals are weighted proportions.
§ Sample sizes for subgroups might not equal total sample size; respondents with missing information were excluded.
If p value from Wald chi-square test measures percentage point change of across-year comparison within stratification.
** Includes Medicare, Medicaid, Indian Health Service, and any other nonmilitary government-run health insurance program.
(+5.7 percentage points), persons aged $64-74$ years (+10.2 percentage points), and persons aged ≥ 75 years (+10.1 percentage points) during this period. Persons aged 18-24 years were most likely to be vaccinated (75.5% in 1999 and 70.3% in 2008), whereas persons aged ≥ 75 years were least likely to be vaccinated (37.0% in 1999 and 47.1% in 2008).

Among adults aged 18-64 years for whom Tdap vaccination status could be assessed, 36.5% were overdue for a decennial tetanus booster. Self-reported Tdap vaccination coverage was 5.9% at the time of the 2008 NHIS survey (Table 2) and was estimated after excluding respondents who reported a tetanus vaccination during 2005-2008 but were not told ($\mathrm{n}=2,662$ [15.4\%] of

17,337) or did not know the vaccine type ($\mathrm{n}=527$ [3.0\%] of 17,337) (Td or Tdap). Sensitivity calculations were conducted to assess the magnitude of potential bias. Assuming all excluded respondents were either 1) not vaccinated or 2) vaccinated, the possible Tdap coverage ranged from 4.6% to 25.4%. Sensitivity calculations also were conducted for adults with infant contact and for HCP.

Reported Tdap vaccination coverage among persons with (5.0%; sensitivity range: $4.1 \%-22.5 \%$) or without (5.9\%) household infant contact were similar (Table 2). Adults with and without household infant contact reported similar decennial tetanus vaccination coverage (61.9% versus 63.5%; $\mathrm{p}=0.50$).

TABLE 2. Self-reported tetanus, diphtheria, and acellular pertussis (Tdap) vaccination coverage among adults aged 18-64 years, by selected characteristics - National Health Interview Survey, United States, 2008

Characteristic	No. in sample ${ }^{*} \dagger$	\%	Tdap coverage ${ }^{\text {§ }}$		p value ${ }^{\text {f }}$
			\%	(95\% CI)	
Total	12,823	100.0	5.9	(5.3-6.4)	
Age group (yrs)					
18-24	1,446	15.3	8.8	(7.0-10.9)	<0.001
25-49	7,474	55.4	5.8	(5.1-6.5)	
50-64	3,903	29.3	4.7	(4.0-5.5)	
Sex					
Male	5,624	49.3	5.4	(4.7-6.3)	0.12
Female	7,199	50.7	6.3	(5.6-7.0)	
Race/Ethnicity					
White, non-Hispanic	7,331	66.8	6.5	(5.8-7.2)	<0.001
Black, non-Hispanic	2,126	12.5	5.7	(4.5-7.2)	
Hispanic	1,383	8.5	4.0	(3.0-5.2)	
Other	1,983	12.1	4.0	(3.1-5.2)	
Poverty status					
At or above poverty level	9,415	12.9	6.4	(5.8-7.1)	0.06
Below poverty level	1,818	87.1	4.9	(3.8-6.4)	
Education					
Some college	7,615	59.6	6.9	(6.3-7.7)	<0.001
High school diploma or less	5,133	40.4	4.2	(3.6-5.1)	
Saw health-care provider in past 12 mos					
Yes	10,129	79.5	6.6	(6.0-7.3)	<0.001
No	2,694	20.5	2.9	(2.2-3.7)	
Health insurance status					
Any public**	1,626	11.2	4.5	(3.2-6.3)	0.003
Private or military	8,404	69.2	6.6	(5.9-7.4)	
No insurance	2,758	19.7	4.1	(3.1-5.5)	
Influenza vaccination in past 12 mos					
Yes	3,102	25.6	9.4	(8.2-10.9)	<0.001
No	9,699	74.5	4.7	(4.1-5.4)	
Persons with household infant contact ${ }^{\dagger \dagger}$					
Yes	531	4.6	5.0	(3.4-7.3)	0.37
No	12,292	95.4	5.9	(5.4-6.5)	
Health-care personnel ${ }^{\text {§§ }}$					
Yes	984	6.8	15.9	(13.0-19.2)	<0.001
No	11,839	93.2	5.1	(4.6-5.6)	

Abbreviation: $\mathrm{Cl}=$ confidence interval.

* Unweighted sample size; percentages and confidence intervals are weighted proportions.
${ }^{\dagger}$ Sample sizes for subgroups might not equal total sample size; respondents with missing information were excluded.
§ Calculated by dividing the number of persons who replied "yes" to the question "Did your most recent [since 2005] tetanus shot contain a pertussis component" by the total sample ($\mathrm{N}=12,823$).
${ }^{9} p$ value from Wald chi-square test.
** Includes Medicare, Medicaid, Indian Health Service, and any other nonmilitary governmentrun health insurance program.
${ }^{\dagger \dagger}$ Defined as adults aged 18 -64 years living in a household with at least one infant aged <1 year.
${ }^{\S \S}$ Classified by current employment in a health-care occupation or in a health-care industry setting, as determined by standard occupation and industry categories.

HCP (15.9\%; sensitivity range: $13.1 \%-30.3 \%$) reported higher Tdap vaccination coverage than others (5.1%), although HCP were more likely (55.9% versus $27.6 \% ; \mathrm{p}<0.001$) to recall the vaccination type. HCP also were more likely than others to be up-todate with decennial tetanus vaccinations (75.7% versus 62.5%; $\mathrm{p}<0.001$).

Among 4,525 respondents who received a tetanus vaccination during 2005-2008, 59.1\% reported that they were not informed of the vaccination type, and 10.7% could not recall this information (Table 3). Of the remaining respondents, 52.1% reported receiving Tdap, a trend that decreased with increasing age. HCP were more likely than others to have received Tdap as a tetanus vaccination (60.3 versus $50.4 ; \mathrm{p}=0.01$). Adults with household infant contact were not significantly more likely than others to have received Tdap as a tetanus vaccination (60.6% versus $51.8 \% ; \mathrm{p}=0.28$).

Reported by

BL Miller, MPH, F Abmed, PhD, PJ Lu, PhD, MD, GL Euler, DrPH; Immunization Svcs Div; K Kretsinger, MD, Global Immunization Div; National Center for Immunization and Respiratory Diseases, CDC.

Editorial Note

Self-reported tetanus vaccination coverage (within the preceding 10 years) was similar in 1999 (60.4%) and 2008 (61.6\%) among U.S. adults; coverage increased among older adults during this period but remained lower than coverage among younger adults. The findings in this report are consistent with 1988-1991 serologic data on tetanus immunity among U.S. residents (69.7% among those aged ≥ 6 years, with decreased immunity among older age groups) (3). Similarly, a 2007 telephone survey estimated that tetanus vaccination coverage ranged from 57.2% among adults aged 18-49 years to 44.1% among those aged ≥ 65 years (4). Although tetanus has been rare in the United States during the past 20 years (only 19 cases were reported in 2008 [5]), persons aged ≥ 65 years remain at greatest risk because of suboptimal decennial tetanus booster vaccination coverage (1,3). Despite the 10 percentage point increase in coverage noted from 1999 to 2008, the findings of this report suggest that these suboptimal coverage levels have remained.

Pertussis, in contrast to tetanus, is common in the United States with 13,278 cases reported in 2008 (5). This count likely is an underestimate; pertussis can have nonspecific symptoms, especially among adults, and often goes undiagnosed (1,6). This analysis confirms that the majority of U.S. adults probably were not protected against pertussis at the time of the 2008 NHIS survey; self-reported Tdap vaccination coverage was 5.9% (sensitivity range: $4.6 \%-25.4 \%$). These findings, compared with a 2.1% coverage estimate described in a 2007 report (4), suggest that early

TABLE 3. Type of tetanus vaccination received, and proportion that were tetanus, diphtheria, acellular pertussis (Tdap) vaccinations, among adults aged 18-64 years who received a tetanus vaccination, by selected characteristics - National Health Interview Survey, United States, 2005-2008

Characteristic	Type of vaccination received among those who received a tetanus vaccination during 2005-2008									Proportion Tdap of total tetanus vaccinations during 2005-2008*		
	Received Tdap			Received other tetanus vaccination		Doctor did not inform the patient		Could not recall vaccination type				
	No. in sample ${ }^{\dagger}$	\%	(95\% CI)	\%	(95\% CI)	\%	(95\% Cl)	\%	(95\% CI)	No. in sample ${ }^{\dagger}$	\%	(95\% CI)
Total	4,525	15.7	(14.4-17.1)	14.4	(13.1-15.8)	59.1	(57.0-61.2)	10.7	(9.5-12.1)	1,336	52.1	(48.9-55.2)
Age group (yrs)												
18-24	640	18.4	(15.1-22.2)	9.5	(6.9-12.9)	61.0	(55.8-65.9)	11.2	(8.5-14.5)	171	66.0	(57.4-73.6)
25-49	2,517	16.2	(14.5-18.2)	15.0	(13.3-16.8)	58.4	(55.9-60.9)	10.4	(9.0-11.8)	778	52.0	(47.6-56.4)
50-64	1,367	12.9	(11.1-15.1)	16.5	(14.4-18.9)	59.4	(56.0-62.6)	11.2	(9.3-13.4)	387	43.9	(38.8-49.2)
Persons with household infant contact ${ }^{\S}$	168	16.2	(11.1-23.1)	10.8	(6.8-16.7)	59.2	(50.2-67.6)	13.8	(8.9-21.0)	50	60.0	(45.1-73.3)
Health-care personnel ${ }^{\text {I }}$	441	33.7	(28.2-39.8)	22.2	(18.4-26.5)	37.6	(32.0-43.5)	6.5	(4.3-9.8)	230	60.3	(53.3-66.9)

Abbreviation: $\mathrm{Cl}=$ confidence interval.
${ }^{*}$ Calculated by dividing respondents who reported receiving Tdap by the sum of those who reported receiving Tdap and those who reported receiving other tetanus vaccination; respondents who reported that the doctor did not inform them and those that could not recall the vaccination type were excluded.
† Unweighted sample size; percentages and confidence intervals are weighted proportions.
§ Defined as adults aged 18-64 years living in a household with at least one infant aged <1 year.
${ }^{9}$ Classified by current employment in a health-care occupation or in a health-care industry setting, as determined by standard occupation and industrial categories.
vaccination coverage with the new vaccine was slow. At the time of the NHIS survey, 36.5\% of U.S. adults aged 18-64 years were overdue for a decennial tetanus booster, which the one-time Tdap dose is recommended to replace. Tdap vaccination opportunities also might have been missed because of reluctance of health-care providers to vaccinate patients who either received a Td dose within the preceding 10 years or had unknown vaccination status. However, intervals of <10 years may be used to protect against pertussis (1). Although Tdap vaccination coverage was suboptimal in 2008, signs of improvement were observed among those who had received tetanus vaccinations since Tdap was made available; 52.1% of total tetanus vaccinations during 2005-2008 were Tdap, which represented approximately a 30 percentage-point increase since 2007 (20.7\%) (4).

Compared with the general population, HCP are at increased risk for acquiring pertussis, which can be transmitted to patients, including infants and immunocompromised persons $(1,7)$. Tdap coverage was higher among HCP (15.9\%; sensitivity range: $13.1 \%-30.1 \%)$ than non-HCP (5.1\%) in 2008. Although ACIP recommends that HCP with direct patient contact receive Tdap (1), patient contact information was not collected in the survey. Nevertheless, the findings in this report were consistent with a recent survey of HCP: only 15% received a pertussis vaccination when offered at no cost (7). Many HCP might not be seeking vaccination actively.

Infants are at increased risk for pertussis and can acquire the disease from adult contacts $(1,6)$. Protecting infants, especially those aged <6 months who are too young to complete a primary pertussis vaccination series, is important; over 90% of pertussisattributable deaths in the United States during 2000-2004 were among infants aged <6 months (6). The findings in this report suggest that during 20052008, this risk largely went unrecognized, given that adults with infant contact were no more likely than other adults to have received Tdap and also were no more likely to have been up-to-date on decennial tetanus booster vaccinations.

The findings in this report are subject to at least two limitations. First, vaccination coverage was selfreported and therefore might be subject to inaccuracy. For those recalling a tetanus vaccination (within preceding 10 years), recall accuracy can be highly reliable, but unreliable for those not reporting one (sensitivity: 92.4%; specificity: 26.5%) (8). Although the extent to which this was the case in this study is unknown, tetanus vaccination coverage likely was underestimated. The recall accuracy of Tdap vaccination, although unknown, likely is dependent on the provider-patient discussion of tetanus vaccination (including type) as well as patient comprehension and retention. However, the recollection period in this study spans at most 3 years, in contrast with at least 10 years for decennial tetanus boosters. Second, many respondents were excluded from estimations of Tdap coverage, creating

What is already known on this topic?

Since the Advisory Committee on Immunization Practices (ACIP) recommended the tetanus, diphtheria, and acellular pertussis (Tdap) vaccine for adults in 2005, tetanus vaccination coverage among U.S. adult populations has not been well documented.
What is added by this report?
Coverage with any tetanus vaccination among U.S. adults was similar in 2008 compared with 1999 (61.6% versus $60.4 \% ; p=0.07$); coverage with the newly licensed Tdap vaccine was suboptimal among adults aged 18-64 years (5.9\%), including health-care personnel (15.9%) and persons with infant contact (5.0\%) (two populations at increased risk for transmitting pertussis to susceptible contacts).
What are the implications for public health practice?
Vaccination providers should approach every patient visit as an opportunity to discuss tetanus vaccination status and should recommend Tdap to adults aged 18-64 years whose most recent tetanus vaccination was ≥ 10 years prior; targeted interventions are needed to increase coverage among health-care personnel and those with infant contact (two populations suggested to receive Tdap at intervals as short as 2 years since their most recent tetanus vaccination).
a potential for bias, especially for underestimation of coverage; all respondents who reported a tetanus vaccination during 2005-2008, but were unable to say whether Td or Tdap was used, were excluded. This procedure yielded a coverage estimate of 5.9%. Actual Tdap coverage could fall within the range of 4.6% to 25.4%, depending on what proportion of excluded respondents actually received Tdap. Assuming that the excluded respondents received Tdap in the same proportion as did the respondents who knew which vaccine they received (52.1\%), the coverage estimate would be 14.6%. Regardless, estimated Tdap vaccination coverage was suboptimal in 2008.

Health-care provider recommendations are a crucial determinant of vaccination acceptability (9). Vaccination providers should 1) discuss tetanus vaccination status, especially with older patients, 2) recommend Tdap for persons aged 18-64 years whose most recent tetanus vaccination was ≥ 10 years prior, and 3) recommend that Tdap vaccination for HCP with direct patient contact and those with infant contact be administered as soon as feasible, at intervals as short as 2 years since the most recent tetanus vaccination. For other persons aged 18-64 years, Tdap can be administered within 10 years of
the most recent tetanus vaccination to protect against pertussis and especially should be considered during outbreaks and periods of increased community pertussis activity (1). Targeted efforts are needed to increase coverage among HCP and those with infant contact. Educational focus on the threat of clinical pertussis outbreaks, combined with offering free vaccination, might improve coverage among HCP (7). Postpartum Tdap vaccination in some hospital settings has increased coverage among mothers and other household caregivers of infants (10). CDC currently is working to identify patient and provider factors affecting Tdap vaccination coverage.

References

1. CDC. Preventing tetanus, diphtheria, and pertussis among adults: use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine. Recommendations of the Advisory Committee on Immunization Practices (ACIP) and recommendation of ACIP, supported by the Healthcare Infection Control Practices Advisory Committee (HICPAC), for use of Tdap among health-care personnel. MMWR 2006;55(RR-17).
2. National Center for Health Statistics. National Health Interview Survey: questionnaires, datasets, and related documentation. Available at http://www.cdc.gov/nchs/nhis/quest_data_ related_1997_forward.htm. Accessed October 7, 2010.
3. Gergen PJ, McQuillan GM, Kiely M, Ezzati-Rice TM, Sutter RW, Virella G. A population-based serologic survey of immunity to tetanus in the United States. N Engl J Med 1995;332:761-6.
4. CDC. Vaccination coverage among U.S. adults, National Immunization Survey—adult, 2007. Available at http:// www.cdc.gov/vaccines/stats-surv/nis/downloads/nis-adult-summer-2007.pdf. Accessed October 7, 2010.
5. CDC. Summary of notifiable diseases-United States, 2008. MMWR 2010;57(No. 54).
6. Cortese MM, Baughman AL, Brown K, Srivastava P. A "new age" in pertussis prevention: new opportunities through adult vaccination. Am J Prev Med 2007;32:177-85.
7. Top KA, Halperin BA, Baxendale D, Mackinnon-Cameron D, Halperin SA. Pertussis immunization in paediatric healthcare workers: knowledge, attitudes, beliefs, and behaviour. Vaccine 2010;10:2169-73.
8. Hagan PT, Bond AR, Rehman H, Molella RG, Murad MH. Have you had a tetanus booster in the past 10 years? Sensitivity and specificity of the question. Patient Educ Couns 2008;70:403-6.
9. National Foundation for Infectious Diseases. National survey on adult vaccination reports low consumer awareness of vaccines and the risks of vaccine-preventable diseases. Bethesda, MD: National Foundation for Infectious Diseases; 2008. Available at http://www.nfid.org/pdf/factsheets/survey. pdf. Accessed October 7, 2010.
10. Healy CM, Mayes BH, Rench MA. Implementation of cocooning against pertussis in a high-risk population [Abstract \#22776]. Presented at the 44th National Immunization Conference, Atlanta, GA; April 19-22, 2010.

Progress Toward Control of Rubella and Prevention of Congenital Rubella Syndrome - Worldwide, 2009

Rubella usually is a mild, febrile rash illness in children and adults; however, infection early in a woman's pregnancy, particularly during the first 16 weeks, can result in miscarriage, fetal death, or an infant born with birth defects (i.e., congenital rubella syndrome [CRS]) (1). In 2000, the World Health Organization (WHO) published the first rubella vaccine position paper to guide introduction of rubella-containing vaccine (RCV) in national childhood immunization schedules (2). As of December 2009, a total of 130 WHO member states have introduced RCV, a 57% increase from 83 member states in 1996. In addition, goals to eliminate rubella and CRS have been established in the WHO Region of the Americas (by 2010) and the WHO European Region (by 2015),* and the WHO Western Pacific Region has established targets for accelerated rubella control and CRS prevention by 2015. During 2009, a total of 121,344 rubella cases were reported from 167 member states to WHO, an 82% decrease from 670,894 cases reported in 2000 from 102 member states. This report summarizes reported rubella and CRS cases globally and progress toward global introduction and use of RCV.

Member states submit information to WHO on the number of reported cases of rubella and CRS, and the use, timing, and number of RCV doses administered in the national immunization schedule using the WHO/UNICEF Joint Reporting Form (JRF). JRF data were analyzed for 1996 and 2009 to assess changes in rubella vaccine use, and from 2000 to 2009 to measure changes in reported burden of rubella and CRS. ${ }^{\dagger}$ Case definitions for rubella and CRS ${ }^{\S}$ have been published by WHO; however, the

[^4]exact definition used might differ slightly to reflect specific regional conditions (3). WHO recommends that member states have first-dose measles-containing vaccine (MCV1) coverage of $>80 \%$ before introducing RCV (2). To assess member state eligibility for RCV introduction, WHO/UNICEF MCV1 coverage estimates for 2009 were reviewed. To assess overall MCV1 coverage for 2009, median and interquartile ranges of MCV1 coverage estimates were calculated separately for member states using RCV and for member states not using RCV.

Use of rubella-containing vaccine

As of December 2009, a total of 130 of the 193 WHO member states used RCV in national immunization schedules (Figure), including two (4%) of 46 member states in the WHO African Region (AFR), 35 (100%) in the Region of Americas (AMR), 15 (71\%) of 21 in the Eastern Mediterranean Region (EMR), 53 (100%) in the European Region (EUR), four (36\%) of 11 in the South-East Asia Region (SEAR), and 21 (78\%) of 27 in the Western Pacific Region (WPR). In comparison, only 83 member states used RCV in their national immunization schedules in 1996.

Among the 130 member states with RCV in their national immunization schedules as of December 2009, the first dose is recommended to be administered at ages 12-24 months in 122 (94\%) member states. Although only one RCV dose is recommended routinely, 119 (92%) member states use a 2 -dose schedule because rubella vaccine is combined with measles vaccine, which requires a 2 -dose schedule. Measles-mumps-rubella (MMR) vaccine is used in 115 (88\%) member states, measles-rubella (MR) vaccine is used in $12(9 \%)$ member states, measles-mumps-rubella-varicella vaccine is used in two (2\%) member states, and single-antigen rubella vaccine is used in one member state.

In 2009, median MCV1 coverage was 96% (interquartile range: $92 \%-99 \%$) for the 130 member states using RCV, including nine member states (Azerbaijan, the Cook Islands, the Dominican Republic, Ecuador, Haiti, Iraq, Lebanon, Palau, and Samoa) with MCV1 coverage $\leq 80 \%$. For member states not using RCV, the median MCV1 coverage was 76% (interquartile

FIGURE. World Health Organization (WHO) member states using rubella vaccine and member states* with minimum first dose measles-containing vaccine (MCV1) coverage sufficient for rubella vaccine introduction, 2009

* Member states that have not introduced rubella-containing vaccine into their childhood schedule.
range: $74 \%-91 \%$), including 22 member states ${ }^{9}$ with sustained MCV1 coverage $>80 \%$ in 2009 that have met the vaccination coverage criteria for introduction of RCV (Figure).

Reported Rubella and CRS Cases

During 2009, a total of 121,344 rubella cases from 167 member states were reported to WHO, an 82% decrease from 670,894 cases reported during 2000 from 102 member states (Table). The greatest percentage decrease between 2000 and 2009 was in AMR, where reported rubella cases decreased nearly 100%, from 39,228 to 18 , and the number of reporting member states increased from 25 to 34 . In EUR, which shares with AMR the goal of eliminating rubella virus transmission, the number of cases reported decreased 98%, from 621,039 to 11,623 ,

[^5]and number of reporting member states increased from 41 to 46 . In EMR, the number of rubella cases decreased 35%, from 3,122 to 2,030 , and the number of reporting member states increased from 11 to 15 . In contrast, during 2000-2009, reported rubella cases in AFR increased 20 -fold, from 865 to 17,388 , and the number of reporting member states increased from seven to 38. In SEAR, reported cases increased 14 -fold during the period, from 1,165 to 17,208 , and the number of reporting member states increased from three to nine. Neither AFR nor SEAR have specific goals for rubella control. In WPR, the number of rubella cases increased 12 -fold during 2000-2009, from 5,475 to 73,077. During that period, China started to report rubella cases in 2004 and the number of reporting member states increased from 15 to 25 . Globally, a total of 165 CRS cases were reported from 123 member states during 2009, compared with 157 CRS cases reported from 75 member states during 2000.

TABLE. Reported cases of rubella and congenital rubella syndrome, by World Health Organization (WHO) region, 2009

WHO region	No. of member states in region	Rubella				Congenital rubella syndrome		
		Member states reporting		No. of cases	Incidence per 100,000 population	Member states reporting		No. of cases
		No.	(\%)			No.	(\%)	
African	46	38	(83)	17,388	2.11	15	(33)	47
Americas	35	34	(97)	18	<0.01	34	(97)	20
Eastern Mediterranean	21	15	(71)	2,030	0.34	10	(48)	67
European	53	46	(87)	11,623	1.30	43	(81)	17
South-East Asia	11	9	(82)	17,208	0.96	4	(36)	3
Western Pacific	27	25	(93)	73,077	4.08	17	(63)	11
Total	193	167	(87)	121,344	1.78	123	(64)	165

Reported by
P Strebel, MBChB, A Dabbagh, PhD, M Gacic-Dobo, Dept of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland. SE Reef, MD, S Cochi, MD, Global Immunization Div, National Center for Immunization and Respiratory Diseases, CDC.

Editorial Note

The primary purpose of rubella vaccination is to prevent congenital rubella virus infection, including CRS, which affects an estimated 110,000 infants each year in developing countries (4). Safe and effective RCVs have been available since 1969. However, until the 1990 s, developed countries primarily used RCV because the disease burden caused by rubella virus had not been documented sufficiently in the developing world, and because of the additional cost of the rubella vaccine component when combined with MR or MMR vaccine and concern that the risk for CRS might increase if high vaccination coverage could not be achieved and maintained. Low coverage might result in decreased virus circulation, which could increase the average age of rubella infection for females from childhood to the childbearing years.

Rubella and CRS are vastly underreported to WHO through routine disease surveillance systems. Reporting of rubella and CRS cases in a region is dependent on the number of member states with surveillance systems and the quality of those systems. As a country makes progress on rubella control and CRS prevention, the quality of the surveillance improves to monitor the effectiveness of the vaccination program and the number of reported cases might increase even when the actual number of infections decreases. For example, 46,621 infants with CRS are estimated to be born annually in SEAR, based on seroprevalence data and statistical models; yet, during 2000-2009, a
mean of only 13 CRS cases (range: 0-61 cases) were reported by one to four member states annually. As rubella control and surveillance continues to improve in SEAR, the number of reported CRS cases might increase. WHO has published guidelines on CRS surveillance that recommend identifying infants born with congenital defects associated with CRS and follow-up of pregnant women who are infected during pregnancy (5). Documenting the extent of CRS is challenging because of the difficulty of diagnosis and reporting in settings with limited medical resources. Nevertheless, clusters of children born with CRS have been identified after rubella outbreaks, even in resource-poor settings (e.g., Romania) (厅). In the majority of member states in all WHO regions, rubella cases are identified through integrated measlesrubella case-based surveillance.

During the past decade, most member states have increased the frequency of laboratory testing of suspected measles and rubella cases. However, because $20 \%-50 \%$ of rubella infections do not include a rash, many rubella cases will not be detected or reported. In all regions, widespread rubella virus circulation has been documented through serosurveys (7).

In 2009, two thirds of all WHO member states included RCV as part of their national immunization schedule; however, these member states represent $<50 \%$ of the global birth cohort. As other member states consider RCV introduction, the potential risk needs to be considered that rubella virus transmission dynamics might be altered such that susceptibility might increase among women of childbearing age, resulting in increased risk for CRS. Therefore, for countries introducing RCV, achieving and maintaining high vaccination coverage is essential. In 2009, of the 130 member states that have introduced RCV, 121 member states had sustained MCV1 coverage $>80 \%$ and median MCV1 coverage was 96%.

What is already known on this topic?

Rubella usually is a mild, febrile rash illness in children and adults; however, infection early in a woman's pregnancy, particularly during the first 16 weeks, can result in miscarriage, fetal death, or an infant born with birth defects (i.e., congenital rubella syndrome [CRS]).
What is added by this report?
As of December 2009, a total of 130 World Health Organization (WHO) member states have introduced rubella-containing vaccine (RCV) into their routine programs, a 57% increase from 83 member states in 1996, and 22 additional member states have met one important criterion for introduction of RCV (first-dose measles-containing vaccine coverage of $>80 \%$), but lack the financial resources to introduce RCV.
What are the implications for public health practice?
All WHO member states that have not introduced RCV should assess the extent to which they are affected by CRS and rubella to determine whether introduction of RCV is appropriate.

Incorporation of RCV into national childhood immunization schedules is both cost-beneficial and cost-effective (8). Studies in Barbados and Guyana estimated a lifetime cost of treating a single CRS case to be approximately $\$ 50,000$ in Barbados and $\$ 64,000$ in Guyana (8). In contrast, rubella vaccine is highly affordable; the incremental costs of incorporating rubella vaccine in MR and MMR vaccines using a 10-dose vial are $\$ 0.31$ and $\$ 0.70-\$ 1.37^{* *}$ per dose, respectively. In introducing RCV, MR and MMR vaccines easily replace single-antigen measles vaccines in routine childhood immunization schedules.

In AMR and EUR, the two WHO regions with rubella elimination goals, rubella cases have decreased more than 97\% (9). In September 2010, the Pan American Health Organization (PAHO) announced that AMR had achieved the rubella and CRS elimination goals, based on analysis of surveillance data; efforts are under way to document the elimination of rubella and CRS (10). As regions and member states make progress toward achieving rubella and CRS elimination goals, challenges remain, including the risk for disease importation. To achieve and maintain the elimination goals, member states will need to ensure high vaccination coverage and maintain

[^6]high-quality, integrated measles-rubella and CRS surveillance.

With the substantial morbidity and cost resulting from infants born with CRS and the ease of introduction of RCV into the routine vaccination program, member states and regions that have not introduced RCV are encouraged to assess their burden of CRS and rubella and to determine whether introduction of RCV is appropriate, and if so, to explore financially sustainable options for providing RCV. Twenty-two member states have sustained MCV1 coverage $>80 \%$, but have not yet introduced RCV, largely because of a lack of financial resources. Rubella control and prevention of CRS can be accelerated by integrating rubella into the measles case-based surveillance system, establishing CRS surveillance, and using combined MR and MMR vaccines as part of current measles elimination and global mortality reduction activities.

References

1. Plotkin SA, Reef SE. Rubella vaccines. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 5th ed. Philadelphia, PA: Saunders; 2008:735-71.
2. World Health Organization. Rubella vaccines. WHO position paper. Wkly Epidemiol Rec 2000;75:161-72.
3. World Health Organization. Rubella and congenital rubella syndrome. In: WHO-recommended standards for surveillance of selected vaccine-preventable diseases. Geneva, Switzerland: World Health Organization; 2003:35-9.
4. Cutts FT, Vynnycky E. Modelling the incidence of congenital rubella syndrome in developing countries. Int J Epidemiol 1999;28:1176-84.
5. World Health Organization. Guidelines for surveillance of congenital rubella syndrome and rubella, field test version, May 1999. Geneva, Switzerland: World Health Organization; 1999:1-44.
6. Rafila A, Marin M, Pistol A, et al. A large rubella outbreak, Romania-2003. Euro Surveill 2004;9:7-9.
7. Cutts FT, Robertson SE, Diaz-Ortega JL, Samuel R. Control of rubella and congenital rubella syndrome (CRS) in developing countries, part 1: burden of disease from CRS. Bull World Health Organ 1997;75:55-68.
8. Hinman AR, Irons B, Lewis M, Kandola K. Economic analyses of rubella and rubella vaccines: a global review. Bull World Health Organ 2002;80:264-70.
9. World Health Organization. Progress towards eliminating rubella and congenital rubella syndrome in the western hemisphere, 2003-2008. Wkly Epidemiol Rec 2008;83:395-400.
10. Pan American Health Organization. Progress reports on technical matters: elimination of rubella and congenital rubella syndrome. 50th Directing Council, 62nd session of the Regional Committee; September 27-October 1, 2010; Washington, DC. Washington, DC: Pan American Health Organization, World Health Organization; 2010.

Announcements

Final 2009-10 Influenza Season Vaccination Coverage Estimates

The final national vaccination coverage estimates for the influenza A (H1N1) 2009 monovalent vaccine and the 2009-10 seasonal influenza vaccine (overall and for selected population subgroups) are available online at http://www.cdc.gov/flu/professionals/vaccination/coverage_0910estimates.htm. These estimates update the interim estimates published on April 2 and April 30, 2010 (1,2). The final estimates were derived by using data collected via two random-digit-dialed telephone surveys: the National 2009 H1N1 Flu Survey (NHFS) and the Behavioral Risk Factor Surveillance System (BRFSS) survey. These surveys were conducted nationwide during October 2009-June 2010. Final estimates are similar to interim estimates.

References

1. CDC. Interim results: state-specific influenza A (H1N1) 2009 monovalent vaccination coverage-United States, October 2009-January 2010. MMWR 2010;59:363-8.
2. CDC. Interim results: state-specific seasonal influenza vaccination coverage-United States, August 2009-January 2010. MMWR 2010;59:477-84.

Conference on Mobile Technologies Use for Public Health and Medical Information — November 8-10, 2010

Approximately 5 billion mobile telephones are in use in the world, and use has become common even in remote villages of developing countries. Public health and medical researchers have become interested in the use of mobile telephones and other mobile technologies to improve access to medical care and pharmaceuticals, facilitate responses to public health emergencies, and conduct public health surveillance. The 2010 mHealth Summit, to be held November $8-10$ at Walter E. Washington Convention Center in Washington, DC, will focus on how mobile technologies can be used to improve the health of persons in underserved communities worldwide.

The conference is being organized by the Foundation for the National Institutes of Health in partnership with the mHealth Alliance and the National Institutes of Health. Speakers will include Bill Gates, Bill \& Melinda Gates Foundation; Ted Turner, United Nations Foundation; Aneesh Chopra, The White House; Francis A. Collins, National Institutes of Health; Julio Frenk, Harvard School of Public Health; and many others. Allen Hightower, former associate director of informatics for CDC Kenya, will speak on the use of mobile technologies in Kenya and at the CDC Division of Parasitic Diseases and Malaria.

Registration details and additional information are available at http://www.mhealthsummit.org.

Prevalence of Overweight* and Obesity ${ }^{\dagger}$ Among Youths Aged 6-19 Years, by Race/Ethnicity and Sex - National Health and Nutrition Examination Survey, United States, 2007-2008

* Body mass index (BMI) ≥ 85 th and <95th sex- and age-specific percentile from the 2000 CDC growth charts.
${ }^{\dagger}$ BMI ≥ 95 th sex- and age-specific percentile from the 2000 CDC growth charts.

During 2007-2008, obesity was more prevalent among Hispanic males aged 6-19 years (26.7\%) than non-Hispanic white (18.2%) and non-Hispanic black (18.9%) males. Obesity was more prevalent among non-Hispanic black females (25.9\%) than non-Hispanic white females (15.6\%). No significant differences in prevalence of overweight by race/ethnicity were observed among either males or females aged 6-19 years.

Sources: Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in U.S. children and adolescents, 2007-2008. JAMA 2010;303:242-9.

National Health and Nutrition Examination Survey, 2007-2008. Available at http://www.cdc.gov/nchs/nhanes.htm.

Notifiable Diseases and Mortality Tables

TABLE I. Provisional cases of infrequently reported notifiable diseases (<1,000 cases reported during the preceding year) - United States, week ending October 9, 2010 (40th week)*

Disease	Current week	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	5-year weekly average ${ }^{\dagger}$	Total cases reported for previous years					States reporting cases during current week (No.)
				2009	2008	2007	2006	2005	
Anthrax	-	-	-	1	-	1	1	-	
Botulism, total	3	80	2	118	145	144	165	135	
foodborne	-	6	0	10	17	32	20	19	
infant	2	56	2	83	109	85	97	85	VA (1), ID (1)
other (wound and unspecified)	1	18	0	25	19	27	48	31	CA (1)
Brucellosis	1	95	2	115	80	131	121	120	FL (1)
Chancroid	-	33	0	28	25	23	33	17	
Cholera	-	5	0	10	5	7	9	8	
Cyclosporiasis ${ }^{\text {§ }}$	2	142	1	141	139	93	137	543	FL (2)
Diphtheria	-	-	-	-	-	-	-	-	
Domestic arboviral diseases ${ }^{\S}$, 9,									
California serogroup virus disease	-	46	2	55	62	55	67	80	
Eastern equine encephalitis virus disease	-	10	0	4	4	4	8	21	
Powassan virus disease	-	5	-	6	2	7	1	1	
St. Louis encephalitis virus disease	-	5	0	12	13	9	10	13	
Western equine encephalitis virus disease	-	-	-	-	-	-	-	-	
Haemophilus influenzae, ${ }^{* *}$ invasive disease (age <5 yrs):									
serotype b	-	13	1	35	30	22	29	9	
nonserotype b	-	130	2	236	244	199	175	135	
unknown serotype	2	176	2	178	163	180	179	217	MD (1), FL (1)
Hansen disease ${ }^{\text {§ }}$	-	34	2	103	80	101	66	87	
Hantavirus pulmonary syndrome ${ }^{\S}$	-	15	0	20	18	32	40	26	
Hemolytic uremic syndrome, postdiarrheal ${ }^{\text {§ }}$	2	162	7	242	330	292	288	221	GA (1), CA (1)
HIV infection, pediatric (age <13 yrs) ${ }^{\dagger \dagger}$	-	-	1	-	-	-	-	380	
Influenza-associated pediatric mortality ${ }^{\text {¢ }}$, §§	-	56	3	358	90	77	43	45	
Listeriosis	3	599	21	851	759	808	884	896	PA (1), TX (2)
Measles ${ }^{\text {a/ }}$	1	55	0	71	140	43	55	66	MN (1)
Meningococcal disease, invasive***:									
A, C, Y, and W-135	1	186	4	301	330	325	318	297	WA (1)
serogroup B	-	85	2	174	188	167	193	156	
other serogroup	-	7	0	23	38	35	32	27	
unknown serogroup	8	294	9	482	616	550	651	765	$\mathrm{OH}(1), \mathrm{MD}(1), \mathrm{FL}(1), \mathrm{KY}(1), \mathrm{TN}$ (1), CO (1), CA (2)
Mumps	8	2,402	19	1,991	454	800	6,584	314	NY (2), PA (1), TX (5)
Novel influenza A virus infections ${ }^{\dagger+\dagger}$	-	1	0	43,774	2	4	NN	NN	
Plague	-	2	0	8	3	7	17	8	
Poliomyelitis, paralytic	-	-	0	1	-	-	-	1	
Polio virus Infection, nonparalytic ${ }^{\text {§ }}$	-	-	-	-	-	-	NN	NN	
Psittacosis ${ }^{\S}$	-	4	0	9	8	12	21	16	
Q fever, total ${ }^{\text {§ , §§§ }}$	1	93	2	114	120	171	169	136	
acute	1	72	1	94	106	-	-	-	VA (1)
chronic	-	21	0	20	14	-	-	-	
Rabies, human	-	1	0	4	2	1	3	2	
Rubella 9 ¢9	-	6	0	3	16	12	11	11	
Rubella, congenital syndrome	-	-	-	2	-	-	1	1	
SARS-CoV ${ }^{\S}$,****	-	-	-	-	-	-	-	-	
Smallpox ${ }^{\S}$	-	-	-	-	-	-	-	-	
Streptococcal toxic-shock syndrome ${ }^{\text {§ }}$	4	131	1	161	157	132	125	129	NY (1), VA (2), WV (1)
Syphilis, congenital (age <1 yr) ${ }^{\dagger+\dagger \dagger}$	-	154	8	423	431	430	349	329	
Tetanus s	-	6	1	18	19	28	41	27	
Toxic-shock syndrome (staphylococcal) ${ }^{\text {§ }}$	-	58	1	74	71	92	101	90	
Trichinellosis	-	3	0	13	39	5	15	16	
Tularemia	-	81	3	93	123	137	95	154	
Typhoid fever §	7	303	10	397	449	434	353	324	NY (1), OH (1), FL (3), CA (2)
Vancomycin-intermediate Staphylococcus aureus ${ }^{\text {§ }}$	-	70	1	78	63	37	6	2	
Vancomycin-resistant Staphylococcus aureus ${ }^{\text {§ }}$	-	1	0	1	-	2	1	3	
Vibriosis (noncholera Vibrio species infections) ${ }^{\text {§ }}$	15	611	12	789	588	549	NN	NN	$\begin{aligned} & \mathrm{OH}(1), \mathrm{MD}(1), \mathrm{VA}(1), \mathrm{NC}(1), \mathrm{GA}(1), \mathrm{FL}(2), \mathrm{TX}(2), \\ & \mathrm{WA}(5), \mathrm{CA}(1) \end{aligned}$
Viral hemorrhagic fever ${ }^{\S \S \S \S}$	-	1	-	NN	NN	NN	NN	NN	
Yellow fever	-	-	-	-	-	-	-	-	

See Table I footnotes on next page.

TABLE I. (Continued) Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) — United States, week ending October 9, 2010 (40th week)*
-: No reported cases. N: Not reportable. NN: Not Nationally Notifiable Cum: Cumulative year-to-date counts.

* Incidence data for reporting year 2010 is provisional, whereas data for 2005 through 2009 are finalized.
 Additional information is available at http://www.cdc.gov/ncphi/disss/nndss/phs/files/5yearweeklyaverage.pdf.
 data, and influenza-associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/ncphi/disss/nndss/phs/infdis.htm.
 Enteric Diseases (ArboNET Surveillance). Data for West Nile virus are available in Table II.
** Data for H. influenzae (all ages, all serotypes) are available in Table II.

 completed. Data for HIV/AIDS, when available, are displayed in Table IV, which appears quarterly.

 2009-10 influenza season have been reported.
ๆศ The one measles case reported for the current week was imported.
*** Data for meningococcal disease (all serogroups) are available in Table II.

 Division, National Center for Immunization and Respiratory Diseases (NCIRD).
 respect to acute and chronic Q fever cases.
ๆศๆ $N o$ rubella cases were reported for the current week.
${ }^{* * * *}$ Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases.
$\dagger t+\dagger$ Updated weekly from reports to the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention.
$\S \S \S \S$ There was one case of viral hemorrhagic fever reported during week 12. The one case report was confirmed as lassa fever. See Table II for dengue hemorrhagic fever.

FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals October 9, 2010, with historical data

* Ratio of current 4-week total to mean of 15 4-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

Notifiable Disease Data Team and 122 Cities Mortality Data Team
Patsy A. Hall-Baker
Deborah A. Adams Rosaline Dhara
Willie J. Anderson Pearl C. Sharp
Michael S. Wodajo Lenee Blanton

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Chlamydia trachomatis infection					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$
		Med	Max				Med	Max		
United States	13,257	23,320	26,181	904,939	969,372	86	123	322	6,028	5,897
New England	612	740	1,396	30,224	31,051	-	8	72	365	381
Connecticut	-	214	736	7,172	9,008	-	0	66	66	38
Maine ${ }^{\text {t }}$	40	50	75	1,975	1,840	-	1	7	66	44
Massachusetts	456	398	655	15,614	14,729	-	2	8	120	151
New Hampshire	53	41	115	1,845	1,678	-	1	5	44	68
Rhode Island ${ }^{\dagger}$	49	66	120	2,665	2,874	-	0	4	9	21
Vermont ${ }^{\dagger}$	14	24	63	953	922	-	1	9	60	59
Mid. Atlantic	2,993	3,302	4,619	130,783	121,846	10	15	37	643	669
New Jersey	352	490	691	19,686	18,976	-	0	1	-	45
New York (Upstate)	752	674	2,530	26,354	23,855	4	3	16	174	179
New York City	1,371	1,206	2,143	48,609	45,366	-	1	5	66	68
Pennsylvania	518	890	1,092	36,134	33,649	6	9	26	403	377
E.N. Central	873	3,511	4,127	131,213	156,544	16	30	116	1,635	1,397
Illinois	17	798	1,225	26,515	47,842	-	3	17	209	130
Indiana	-	324	786	14,133	18,211	-	4	10	133	230
Michigan	617	897	1,420	36,930	35,989	2	5	17	262	229
Ohio	130	965	1,078	37,495	38,110	12	7	24	385	311
Wisconsin	109	410	500	16,140	16,392	2	10	54	646	497
W.N. Central	253	1,334	1,565	51,777	55,569	13	23	81	1,098	899
lowa	8	186	265	7,642	7,625	-	4	22	270	175
Kansas	14	187	235	7,242	8,455	-	2	9	112	86
Minnesota	2	275	331	10,476	11,317	-	1	20	98	258
Missouri	202	488	599	19,000	20,212	8	4	30	321	157
Nebraska ${ }^{\dagger}$	26	93	237	3,756	4,227	5	2	26	201	99
North Dakota	-	35	93	1,375	1,398	-	0	18	19	7
South Dakota	1	60	82	2,286	2,335	-	2	6	77	117
S. Atlantic	2,211	4,488	5,681	173,188	196,549	16	19	51	812	895
Delaware	107	84	220	3,401	3,623	-	0	2	7	8
District of Columbia	-	94	177	3,661	5,403	-	0	1	2	6
Florida	705	1,404	1,676	57,631	57,554	8	7	23	303	347
Georgia	-	296	1,323	11,043	31,770	1	5	31	240	287
Maryland ${ }^{\dagger}$	386	459	1,031	18,062	17,376	-	1	3	29	34
North Carolina	114	797	1,562	31,486	32,530	3	1	12	65	92
South Carolina ${ }^{\dagger}$	352	523	694	20,901	21,188	3	1	8	74	46
Virginia ${ }^{\text {a }}$	547	596	902	24,217	24,245	1	2	8	77	62
West Virginia	-	70	137	2,786	2,860	-	0	3	15	13
E.S. Central	951	1,734	2,415	67,937	72,747	4	4	17	227	182
Alabama ${ }^{\dagger}$	314	493	743	20,034	20,819	1	1	10	98	57
Kentucky	133	288	642	11,675	9,807	1	1	6	66	50
Mississippi	254	388	780	14,650	18,740	1	0	3	13	16
Tennessee ${ }^{\dagger}$	250	570	729	21,578	23,381	1	1	5	50	59
W.S. Central	2,430	2,988	4,578	121,707	127,587	12	8	39	332	445
Arkansas ${ }^{\dagger}$	324	245	392	9,088	11,300	1	1	3	27	44
Louisiana	390	228	1,075	10,559	22,512	-	1	5	47	43
Oklahoma	438	256	1,374	12,063	11,400	-	1	8	69	101
Texas ${ }^{\dagger}$	1,278	2,202	3,201	89,997	82,375	11	5	30	189	257
Mountain	551	1,527	1,904	58,352	61,530	6	9	28	433	470
Arizona	208	504	713	19,875	20,301	1	0	3	28	29
Colorado	193	373	617	13,961	14,786	2	2	8	109	121
Idaho ${ }^{\dagger}$	31	69	200	2,971	2,781	3	2	6	77	77
Montana ${ }^{\dagger}$	-	58	76	2,260	2,358	-	1	4	38	49
Nevada ${ }^{\text {+ }}$, ${ }^{+}$	107	171	337	7,382	7,974	-	0	6	30	19
New Mexico ${ }^{\dagger}$	-	171	453	5,909	6,999	-	2	10	87	120
Utah	9	115	175	4,501	4,808	-	1	4	51	35
Wyoming ${ }^{\dagger}$	3	38	79	1,493	1,523	-	0	2	13	20
Pacific	2,383	3,585	5,350	139,758	145,949	9	12	28	483	559
Alaska	-	110	148	4,511	4,113	-	0	1	3	6
California	1,969	2,739	4,406	107,857	111,597	7	7	19	276	330
Hawaii	-	112	158	4,336	4,762	-	0	0	-	1
Oregon	-	206	468	8,180	8,496	2	3	13	139	157
Washington	414	387	497	14,874	16,981	-	2	8	65	65
Territories										
American Samoa	-	0	0	-	-	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-
Guam	-	4	31	201	297	-	0	0	-	-
Puerto Rico	-	93	265	4,051	5,813	N	0	0	N	N
U.S. Virgin Islands	-	10	29	323	406	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2010 is provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly.
${ }^{\dagger}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

$\underline{\text { Reporting area }}$	Dengue Virus Infection									
	Dengue Fever ${ }^{\dagger}$					Dengue Hemorrhagic Fever ${ }^{\S}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$
		Med	Max				Med	Max		
United States	-	5	28	333	NN	-	0	1	4	NN
New England	-	0	2	4	NN	-	0	0	-	NN
Connecticut	-	0	0	-	NN	-	0	0	-	NN
Maine ${ }^{\text {f }}$	-	0	2	3	NN	-	0	0	-	NN
Massachusetts	-	0	0	-	NN	-	0	0	-	NN
New Hampshire	-	0	0	-	NN	-	0	0	-	NN
Rhode Island"	-	0	0	-	NN	-	0	0	-	NN
Vermont ${ }^{\text {® }}$	-	0	1	1	NN	-	0	0	-	NN
Mid. Atlantic	-	0	9	74	NN	-	0	0	-	NN
New Jersey	-	0	0	-	NN	-	0	0	-	NN
New York (Upstate)	-	0	0	-	NN	-	0	0	-	NN
New York City	-	0	7	62	NN	-	0	0	-	NN
Pennsylvania	-	0	2	12	NN	-	0	0	-	NN
E.N. Central	-	0	5	33	NN	-	0	1	1	NN
Illinois	-	0	0	-	NN	-	0	0	-	NN
Indiana	-	0	2	10	NN	-	0	0	-	NN
Michigan	-	0	2	7	NN	-	0	0	-	NN
Ohio	-	0	2	11	NN	-	0	0	-	NN
Wisconsin	-	0	2	5	NN	-	0	1	1	NN
W.N.Central	-	0	2	15	NN	-	0	0	-	NN
lowa	-	0	1	1	NN	-	0	0	-	NN
Kansas	-	0	1	1	NN	-	0	0	-	NN
Minnesota	-	0	2	12	NN	-	0	0	-	NN
Missouri	-	0	0	-	NN	-	0	0	-	NN
Nebraska ${ }^{\text {a }}$	-	0	0	-	NN	-	0	0	-	NN
North Dakota	-	0	1	1	NN	-	0	0	-	NN
South Dakota	-	0	0	-	NN	-	0	0	-	NN
S. Atlantic	-	1	16	169	NN	-	0	1	2	NN
Delaware	-	0	0	-	NN	-	0	0	-	NN
District of Columbia	-	0	0	-	NN	-	0	0	-	NN
Florida	-	1	14	145	NN	-	0	1	2	NN
Georgia	-	0	2	9	NN	-	0	0	-	NN
Maryland ${ }^{\text {d }}$	-	0	0	-	NN	-	0	0	-	NN
North Carolina	-	0	1	4	NN	-	0	0	-	NN
South Carolina ${ }^{\text {a }}$	-	0	3	9	NN	-	0	0	-	NN
Virginia ${ }^{\text {a }}$	-	0	0		NN	-	0	0	-	NN
West Virginia	-	0	1	2	NN	-	0	0	-	NN
E.S. Central	-	0	1	4	NN	-	0	0	-	NN
Alabamaf	-	0	1	1	NN	-	0	0	-	NN
Kentucky	-	0	1	1	NN	-	0	0	-	NN
Mississippi	-	0	1	1	NN	-	0	0	-	NN
Tennesseef	-	0	1	1	NN	-	0	0	-	NN
W.S. Central	-	0	1	1	NN	-	0	1	1	NN
Arkansas ${ }^{\text {a }}$	-	0	0	-	NN	-	0	1	1	NN
Louisiana	-	0	0	-	NN	-	0	0	-	NN
Oklahoma	-	0	1	1	NN	-	0	0	-	NN
Texas ${ }^{\text {a }}$	-	0	0	-	NN	-	0	0	-	NN
Mountain	-	0	2	13	NN	-	0	0	-	NN
Arizona	-	0	1	4	NN	-	0	0	-	NN
Colorado	-	0	0	-	NN	-	0	0	-	NN
Idahof	-	0	1	2	NN	-	0	0	-	NN
Montanal	-	0	1	2	NN	-	0	0	-	NN
Nevada"	-	0	1	4	NN	-	0	0	-	NN
New Mexicon	-	0	1	1	NN	-	0	0	-	NN
Utah	-	0	0	-	NN	-	0	0	-	NN
Wyoming ${ }^{\text {a }}$	-	0	0	-	NN	-	0	0	-	NN
Pacific	-	0	5	20	NN	-	0	0	-	NN
Alaska	-	0	0	-	NN	-	0	0	-	NN
California	-	0	5	11	NN	-	0	0	-	NN
Hawaii	-	0	0	-	NN	-	0	0	-	NN
Oregon	-	0	0	-	NN	-	0	0	-	NN
Washington	-	0	2	9	NN	-	0	0	-	NN
Territories										
American Samoa	-	0	0	-	NN	-	0	0	-	NN
C.N.M.I.	-	-	-	-	NN	-	-	-	-	NN
Guam	-	0	0	-	NN	-	0	0	29	NN
Puerto Rico	-	91	534	7,484	NN	-	0	3	29	NN
U.S. Virgin Islands	-	0	0	-	NN	-	0	0	-	NN

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2010 is provisional.
${ }^{\dagger}$ Dengue Fever includes cases that meet criteria for Dengue Fever with hemorrhage, other clinical, and unknown case classifications.
${ }^{\S}$ DHF includes cases that meet criteria for dengue shock syndrome (DSS), a more severe form of DHF.
${ }^{9}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Ehrlichiosis/Anaplasmosis ${ }^{\dagger}$														
	Ehrlichia chaffeensis					Anaplasma phagocytophilum					Undetermined				
	Current week	$\underline{\text { Previous } 52 \text { weeks }}$		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	4	10	181	504	817	3	11	309	597	765	1	2	35	92	154
New England	-	0	3	3	43	-	1	17	57	225	-	0	2	7	2
Connecticut	-	0	0	-	-	-	0	13	18	16	-	0	2	5	-
Maine ${ }^{\text {§ }}$	-	0	1	2	3	-	0	2	14	12	-	0	0	-	-
Massachusetts	-	0	0	-	9	-	0	4	-	83	-	0	0	-	-
New Hampshire	-	0	1	1	4	-	0	3	11	15	-	0	1	2	1
Rhode Island ${ }^{\text {® }}$	-	0	2	-	26	-	0	7	14	99	-	0	0	-	1
Vermont ${ }^{\text {® }}$	-	0	0	-	1	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	-	1	15	41	158	2	3	17	166	259	-	0	2	4	44
New Jersey	-	0	3	-	90	-	0	2	1	63	-	0	0	-	-
New York (Upstate)	-	0	15	24	43	2	3	17	162	188	-	0	1	4	6
New York City	-	0	3	16	9	-	0	1	3	7	-	0	0	-	1
Pennsylvania	-	0	5	1	16	-	0	1	-	1	-	0	1	-	37
E.N. Central	-	0	4	27	82	-	3	36	296	253	-	1	6	56	65
Illinois	-	0	2	12	33	-	0	1	2	6	-	0	2	4	3
Indiana	-	0	0	-	-	-	0	0	-	-	-	0	3	29	36
Michigan	-	0	1	2	5	-	0	0	-	-	-	0	1	3	-
Ohio	-	0	3	6	12	-	0	1	2	1	-	0	0	-	2
Wisconsin	-	0	1	7	32	-	3	36	292	246	-	0	3	20	24
W.N.Central	1	1	13	115	145	-	0	261	8	7	-	0	30	12	16
lowa	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Kansas	-	0	1	6	6	-	0	0	-	1	-	0	0	-	-
Minnesota	-	0	6	-	1	-	0	261	-	3	-	0	30	-	3
Missouri	1	1	13	107	136	-	0	3	8	2	-	0	3	12	13
Nebraska§	-	0	1	2	2	-	0	0	-	1	-	0	0	-	-
North Dakota	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
South Dakota	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
S. Atlantic	2	4	19	218	232	1	1	7	52	15	1	0	1	6	2
Delaware	-	0	3	17	19	-	0	1	4	2	-	0	0	-	-
District of Columbia	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Florida	-	0	2	8	10	-	0	1	3	3	-	0	0	-	-
Georgia	-	0	4	19	17	-	0	1	1	1	-	0	1	1	-
Maryland ${ }^{\S}$	-	0	3	20	37	-	0	2	12	3	-	0	1	2	-
North Carolina	2	1	13	88	59	1	0	4	19	3	-	0	0	-	-
South Carolina ${ }^{\text {§ }}$	-	0	2	3	10	-	0	1	1	-	-	0	0	-	-
Virginia§ ${ }^{\text {® }}$	-	1	13	63	79	-	0	2	12	3	1	0	1	3	2
West Virginia	-	0	0	-	1	-	0	0	-	-	-	0	1	-	-
	1	1	10	79	124	-	0	2	16	3	-	0	1	6	24
Alabama§	-	0	3	10	6	-	0	2	7	1	-	0	0	-	-
Kentucky	-	0	2	12	10	-	0	0	-	-	-	0	0	-	-
Mississippi	-	0	1	3	6	-	0	1	1	-	-	0	0	-	-
Tennessee§	1	1	10	54	102	-	0	2	8	2	-	0	1	6	24
W.S. Central	-	0	141	20	30	-	0	23	2	1	-	0	1	1	-
Arkansas ${ }^{\text {§ }}$	-	0	34	2	4	-	0	6	-	-	-	0	0	-	-
Louisiana	-	0	1	1	-	-	0	0	,	-	-	0	0	-	-
Oklahoma	-	0	105	14	24	-	0	16	2	1	-	0	0	-	-
Texas§	-	0	2	3	2	-	0	1	-	-	-	0	1	1	-
Mountain	-	0	0	-	-	-	0	0	-	-	-	0	1	-	1
Arizona	-	0	0	-	-	-	0	0	-	-	-	0	1	-	1
Colorado	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Idahos ${ }^{\text {® }}$	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Montana§	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Nevada ${ }^{\text {s }}$	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
New Mexico ${ }^{\text {§ }}$	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Utah	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Wyoming ${ }^{\S}$	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Pacific	-	0	1	1	3	-	0	0	-	2	-	0	1	-	-
Alaska	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
California	-	0	1	1	3	-	0	0	-	2	-	0	1	-	-
Hawaii	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Oregon	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Washington	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Territories															
American Samoa	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

[^7]TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae, invasive ${ }^{\dagger}$ All ages, all serotypes				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	229	347	666	13,598	14,623	3,002	5,444	6,324	210,169	236,420	17	59	171	2,217	2,251
New England	3	31	53	1,147	1,382	65	100	196	4,035	3,784	-	3	21	123	151
Connecticut	-	5	13	224	238	-	44	169	1,706	1,803	-	0	15	25	42
Maine ${ }^{\text {§ }}$	2	3	12	164	179	3	3	11	136	105	-	0	2	10	17
Massachusetts	-	12	20	463	596	51	44	81	1,813	1,494	-	2	8	65	73
New Hampshire	-	3	9	115	160	2	3	7	115	82	-	0	2	9	8
Rhode Island ${ }^{\text {§ }}$	-	0	7	35	49	9	5	13	218	266	-	0	1	7	7
Vermont ${ }^{\text {® }}$	1	4	12	146	160	-	0	17	47	34	-	0	1	7	4
Mid. Atlantic	31	61	106	2,311	2,719	601	677	941	27,179	24,467	4	11	34	431	449
New Jersey	-	5	13	193	345	94	102	161	4,216	3,713	-	2	7	69	104
New York (Upstate)	20	22	84	869	1,034	110	104	422	4,311	4,439	3	3	20	114	109
New York City	4	16	32	677	667	264	228	394	9,455	8,539	-	2	6	85	55
Pennsylvania	7	14	24	572	673	133	218	333	9,197	7,776	1	4	9	163	181
E.N. Central	31	53	78	2,215	2,307	292	935	1,260	35,819	50,088	-	10	20	378	351
Illinois	-	12	23	451	499	5	181	380	6,104	15,939	-	3	9	115	134
Indiana	-	5	13	191	234	-	90	218	3,979	5,904	-	1	6	68	64
Michigan	6	13	23	528	525	206	245	472	10,151	11,715	-	0	4	26	18
Ohio	24	16	23	654	643	41	317	372	12,026	12,448	-	2	6	92	79
Wisconsin	1	9	25	391	406	40	93	155	3,559	4,082	-	2	5	77	56
W.N. Central	14	25	165	1,124	1,263	64	273	357	10,535	11,717	-	3	24	130	131
lowa	2	5	11	227	244	2	32	51	1,290	1,313	-	0	1	1	-
Kansas	-	4	10	172	122	1	38	83	1,488	2,025	-	0	2	12	13
Minnesota	-	0	135	136	250	-	39	62	1,482	1,823	-	0	17	25	46
Missouri	8	8	25	330	410	61	124	172	5,013	5,109	-	1	6	65	46
Nebraska§	4	4	9	176	138	-	23	50	886	1,067	-	0	2	17	21
North Dakota	-	0	8	19	12	-	2	11	94	101	-	0	4	10	5
South Dakota	-	1	7	64	87	-	6	16	282	279	-	0	0	-	-
S. Atlantic	57	75	143	2,940	2,838	623	1,268	1,651	49,967	58,828	10	14	27	604	618
Delaware	-	0	5	25	21	30	18	48	780	740	-	0	1	5	3
District of Columbia	-	1	4	28	55	-	38	65	1,405	2,112	-	0	1	2	3
Florida	50	39	87	1,672	1,499	194	378	476	15,545	16,658	6	3	9	145	187
Georgia	-	12	51	485	578	-	107	494	3,818	10,791	1	3	9	139	122
Maryland ${ }^{\S}$	-	5	11	207	220	124	131	237	5,194	4,738	2	1	6	53	74
North Carolina	N	0	0	N	N	33	259	596	10,524	11,093	-	2	9	105	75
South Carolina ${ }^{\text {§ }}$	2	2	9	117	85	106	153	233	6,334	6,619	-	2	7	68	60
Virginia ${ }^{\text {§ }}$	5	9	36	376	341	136	163	271	5,983	5,679	1	2	4	67	69
West Virginia	-	1	5	30	39	-	8	20	384	398	-	0	5	20	25
	-	5	15	189	331	243	477	698	18,415	21,013	2	3	12	135	138
Alabama ${ }^{\S}$	-	4	8	136	158	89	144	217	5,826	5,941	-	0	3	21	34
Kentucky	N	0	0	N	N	23	76	156	3,021	2,867	-	0	2	26	19
Mississippi	N	0	0	N	N	76	111	216	4,119	5,850	-	0	2	10	7
Tennessee ${ }^{\S}$	-	1	10	53	173	55	145	195	5,449	6,355	2	2	10	78	78
	3	8	16	283	399	650	812	1,236	32,841	37,338	-	2	20	99	97
Arkansas ${ }^{\text {§ }}$	3	2	9	100	114	101	73	133	2,778	3,496	-	0	3	13	15
Louisiana	-	3	9	120	160	102	68	441	3,086	7,326	-	0	3	17	17
Oklahoma	-	2	7	63	125	140	79	359	3,531	3,603	-	1	15	61	61
Texas ${ }^{\S}$	N	0	0	N	N	307	571	963	23,446	22,913	-	0	2	8	4
Mountain	16	30	50	1,240	1,306	67	180	262	6,934	7,268	1	5	15	225	199
Arizona	2	3	6	122	161	24	63	109	2,334	2,416	-	2	10	83	65
Colorado	14	13	27	538	387	23	53	94	2,052	2,180	-	1	5	65	57
Idaho ${ }^{\text {§ }}$	-	4	9	162	153	2	2	6	87	81	-	0	2	13	3
Montana§	-	2	11	78	111	-	2	6	85	61	-	0	1	2	1
Nevada§	-	1	11	77	94	18	28	94	1,313	1,405	-	0	2	6	16
New Mexico ${ }^{\text {§ }}$	-	2	5	69	103	-	19	41	798	832	1	1	5	34	26
Utah	-	4	12	164	247	-	6	15	240	237	-	0	4	16	28
Wyoming ${ }^{\S}$	-	1	5	30	50	-	1	4	25	56	-	0	2	6	3
Pacific	74	53	133	2,149	2,078	397	590	810	24,444	21,917	-	2	9	92	117
Alaska	-	2	6	77	94	-	23	37	972	753	-	0	2	19	14
California	54	33	61	1,343	1,348	328	484	692	20,229	18,050	-	0	4	12	39
Hawaii		0	4	24	18		14	23	542	500	-	0	2	6	27
Oregon	8	9	24	388	321	-	18	43	722	829	-	1	5	51	34
Washington	12	8	75	317	297	69	49	66	1,979	1,785	-	0	4	4	3
Territories															
American Samoa	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Guam	-	0	1	2	3	-	0	4	23	19	-	0	0	-	-
Puerto Rico	-	1	8	57	135	-	5	14	208	190	-	0	1	1	4
U.S. Virgin Islands	-	0	0	-	-	-	2	7	78	98	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U:Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2010 is provisional.
${ }^{\dagger}$ Data for H. influenzae (age <5 yrs for serotype b, nonserotype b, and unknown serotype) are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Hepatitis (viral, acute), by type														
	A					B					C				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	24	30	69	1,154	1,568	45	60	204	2,348	2,546	5	15	44	626	570
New England	-	2	5	73	92	-	1	5	42	45	-	1	4	29	53
Connecticut	-	0	3	23	18	-	0	2	15	13	-	0	3	19	41
Maine ${ }^{\dagger}$	-	0	1	7	1	-	0	2	11	11	-	0	1	-	1
Massachusetts	-	1	4	36	57	-	0	2	8	17	-	0	1	9	10
New Hampshire	-	0	1	1	7	-	0	2	6	4	N	0	0	N	N
Rhode Island ${ }^{\dagger}$	-	0	4	6	7	U	0	0	U	U	U	0	0	U	U
Vermont ${ }^{\dagger}$	-	0	0	-	2	-	0	1	2	-	-	0	1	1	1
Mid. Atlantic	3	4	8	151	224	1	5	10	223	273	1	2	6	81	80
New Jersey	-	0	3	11	58	-	1	5	54	83	-	0	2	8	5
New York (Upstate)	2	1	4	48	38	-	1	6	39	45	-	1	4	48	37
New York City	-	1	4	50	69	-	2	4	69	56	-	0	0	-	5
Pennsylvania	1	1	4	42	59	1	1	5	61	89	1	0	3	25	33
E.N. Central	4	4	8	163	240	-	9	17	358	343	1	2	9	104	70
Illinois	-	1	3	37	111	-	2	6	63	91	-	0	1	1	4
Indiana	-	0	2	15	16	-	1	5	46	55	-	0	2	21	14
Michigan	2	1	4	49	56	-	3	6	95	106	1	1	6	66	25
Ohio	2	0	5	39	34	-	2	6	80	72	-	0	1	9	24
Wisconsin	-	0	3	23	23	-	1	8	74	19	-	0	2	7	3
W.N.Central	1	1	13	62	94	3	2	15	90	113	-	0	11	16	16
lowa	-	0	3	5	32	-	0	2	12	28	-	0	1	1	9
Kansas	-	0	2	10	7	-	0	2	5	6	-	0	1	1	1
Minnesota	1	0	12	14	15	1	0	13	7	20	-	0	9	6	3
Missouri	-	0	2	20	19	1	1	3	53	37	-	0	1	5	-
Nebraska ${ }^{\dagger}$	-	0	4	12	18	1	0	2	12	19	-	0	1	3	2
North Dakota	-	0	1	-	-	-	0	0	-	-	-	0	1	-	-
South Dakota	-	0	1	1	3	-	0	1	1	3	-	0	0	-	1
S. Atlantic	8	8	14	279	334	26	16	40	684	698	-	4	8	133	129
Delaware	1	0	1	7	3	-	0	2	20	25	U	0	0	U	U
District of Columbia	-	0	1	1	1	-	0	1	3	10	-	0	1	2	1
Florida	4	3	7	109	143	12	5	12	238	224	-	1	6	44	33
Georgia	2	1	3	33	38	2	2	7	114	118	-	0	2	6	30
Maryland ${ }^{\dagger}$	-	0	4	22	37	1	1	6	50	61	-	0	2	20	19
North Carolina	-	0	5	43	34	2	1	16	81	91	-	1	3	35	19
South Carolina ${ }^{\dagger}$	-	1	3	22	49	2	1	4	45	42	-	0	1	1	1
Virginia ${ }^{\dagger}$	1	1	6	40	27	-	1	14	76	73	-	0	2	11	7
West Virginia	-	0	2	2	2	9	0	14	57	54	-	0	5	14	19
E.S. Central	-	1	3	32	34	4	7	13	267	262	1	3	8	118	80
Alabama ${ }^{+}$	-	0	1	5	9	-	1	5	48	73	-	0	2	5	7
Kentucky	-	0	2	13	8	3	2	8	96	63	1	2	5	81	47
Mississippi	-	0	1	2	8	1	1	3	26	23	U	0	0	U	U
Tennessee ${ }^{\dagger}$	-	0	2	12	9	-	2	8	97	103	-	1	4	32	26
W.S.Central	3	2	19	97	153	3	9	109	360	447	1	1	14	55	44
Arkansas ${ }^{\dagger}$	-	0	3	-	7	-	0	4	32	54	-	0	1	-	1
Louisiana	-	0	2	7	5	-	1	4	38	55	-	0	1	5	7
Oklahoma	-	0	3	-	3	1	2	19	74	79	1	0	12	20	12
Texas ${ }^{\dagger}$	3	2	18	90	138	2	5	87	216	259	-	1	3	30	24
Mountain	1	3	8	116	132	-	2	8	92	111	-	1	5	40	38
Arizona	1	1	5	56	57	-	0	2	23	38	U	0	0	U	U
Colorado	-	1	3	25	43	-	0	3	21	22	-	0	2	7	23
Idaho ${ }^{\dagger}$	-	0	2	6	3	-	0	1	6	10	-	0	2	8	3
Montana ${ }^{\text { }}$	-	0	1	4	6	-	0	1	1	1	-	0	0	-	1
Nevada ${ }^{+}$	-	0	2	12	9	-	1	3	33	27	-	0	1	4	3
New Mexico ${ }^{\dagger}$	-	0	1	3	7	-	0	1	4	5	-	0	2	11	5
Utah	-	0	1	7	5	-	0	1	4	4	-	0	2	10	3
Wyoming ${ }^{\dagger}$	-	0	3	3	2	-	0	0	-	4	-	0	0	-	-
Pacific	4	5	16	181	265	8	6	20	232	254	1	1	6	50	60
Alaska	-	0	1	1	2	-	0	1	3	2	U	0	2	U	U
California	3	4	15	147	209	7	4	17	157	182	1	0	4	21	31
Hawaii	-	0	2	2	8	-	0	1	1	5	U	0	0	U	U
Oregon	1	0	2	16	13	-	1	4	34	31	-	0	3	11	15
Washington	-	0	2	15	33	1	1	4	37	34	-	0	6	18	14
Territories															
American Samoa	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	\bigcirc	-	-	-	-	-	-	-	-	-	0	0	-	-
Guam	-	0	6	14	4	-	1	6	33	48	-	0	6	27	37
Puerto Rico	1	0	1	10	21	1	0	2	16	28	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

[^8]TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Legionellosis					Lyme disease					Malaria				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	35	57	112	2,318	2,657	186	405	2,336	20,968	31,858	20	26	89	1,087	1,108
New England	-	3	11	146	165	11	123	420	5,851	11,004	-	1	4	52	50
Connecticut	-	1	4	32	46	-	41	197	2,086	3,726	-	0	1	1	5
Maine ${ }^{\dagger}$	-	0	2	9	7	11	12	76	578	722	-	0	1	5	2
Massachusetts	-	1	7	77	83	-	37	161	1,876	4,778	-	1	3	37	32
New Hampshire	-	0	5	14	11	-	22	63	996	1,216	-	0	1	2	4
Rhode Island ${ }^{\dagger}$	-	0	3	5	11	-	0	11	45	214	-	0	1	4	4
Vermont ${ }^{\dagger}$	-	0	2	9	7	-	4	26	270	348	-	0	1	3	3
Mid. Atlantic	14	16	31	595	967	79	181	687	10,119	13,870	2	7	17	297	325
New Jersey	-	2	8	52	177	-	44	195	2,567	4,507	-	0	4	1	84
New York (Upstate)	10	5	19	207	288	50	55	577	2,399	3,350	1	1	6	62	40
New York City	-	2	8	102	195	-	2	20	49	919	1	4	14	190	157
Pennsylvania	4	6	16	234	307	29	75	370	5,104	5,094	-	1	3	44	44
E.N. Central	10	11	40	557	569	-	20	156	1,562	2,721	1	2	9	120	145
Illinois	-	1	15	115	99	-	1	16	102	132	-	1	7	44	60
Indiana	1	2	6	85	51	-	1	7	63	77	-	0	2	7	20
Michigan	-	3	19	131	125	-	1	14	88	91	-	0	4	26	24
Ohio	9	4	12	182	227	-	0	5	21	45	1	0	5	35	32
Wisconsin	-	1	11	44	67	-	17	130	1,288	2,376	-	0	1	8	9
W.N. Central	-	2	19	86	92	-	2	1,395	101	196	1	1	11	58	54
Iowa	-	0	2	13	20	-	0	10	71	103	-	0	2	9	10
Kansas	-	0	2	7	6	-	0	1	6	18	-	0	2	9	6
Minnesota	-	0	16	23	8	-	0	1,380	-	68	-	0	11	3	22
Missouri	-	0	4	26	45	-	0	1	1	3	1	0	3	19	9
Nebraska ${ }^{\dagger}$	-	0	2	8	11	-	0	2	9	3	-	0	2	15	6
North Dakota	-	0	1	4	1	-	0	15	13	-	-	0	1	-	-
South Dakota	-	0	1	5	1	-	0	1	1	1	-	0	2	3	1
S. Atlantic	6	10	26	407	419	92	60	168	3,015	3,688	5	6	36	279	292
Delaware	-	0	3	13	16	2	11	31	527	846	-	0	1	2	4
District of Columbia	-	0	4	13	17	-	0	4	18	55	-	0	3	8	15
Florida	3	3	9	139	135	3	2	11	83	71	4	2	7	105	79
Georgia	1	1	4	37	43	-	0	2	8	38	-	0	2	3	59
Maryland ${ }^{\dagger}$	1	3	12	86	103	56	25	74	1,274	1,768	-	1	19	64	61
North Carolina	1	0	7	47	48	1	1	9	72	89	1	0	13	40	22
South Carolina ${ }^{\dagger}$	-	0	2	9	9	-	0	3	26	32	-	0	1	3	3
Virginia ${ }^{\text {a }}$	-	1	6	52	42	20	15	79	908	657	-	1	5	51	47
West Virginia	-	0	3	11	6	10	0	33	99	132	-	0	2	3	2
E.S. Central	1	2	10	100	108	-	1	4	39	31	1	0	3	25	28
Alabama ${ }^{+}$	-	0	2	14	14	-	0	1	2	2	-	0	1	6	8
Kentucky	-	0	4	22	41	-	0	1	4	1	-	0	3	6	8
Mississippi	-	0	3	9	4	-	0	0	-	-	-	0	2	2	3
Tennessee ${ }^{\dagger}$	1	1	6	55	49	-	1	4	33	28	1	0	2	11	9
W.S. Central	-	3	14	102	86	-	2	44	79	168	1	1	31	68	54
Arkansas ${ }^{+}$	-	0	2	12	7	-	0	0	-	-	-	0	1	2	5
Louisiana	-	0	3	7	9	-	0	1	2	-	-	0	1	2	5
Oklahoma	-	0	4	11	3	-	0	2	-	-	-	0	1	5	1
Texas ${ }^{\dagger}$	-	2	10	72	67	-	2	42	77	168	1	1	30	59	43
Mountain	1	3	10	121	111	-	0	3	18	48	1	1	3	49	43
Arizona	1	1	5	41	36	-	0	1	3	4	-	0	2	22	8
Colorado	-	1	5	27	19	-	0	1	2	1	-	0	2	15	24
Idaho ${ }^{+}$	-	0	1	5	5	-	0	1	5	13	1	0	1	2	2
Montana ${ }^{\dagger}$	-	0	1	4	5	-	0	1	1	3	-	0	1	2	5
Nevada ${ }^{\dagger}$	-	0	2	18	12	-	0	1	-	12	-	0	1	4	-
New Mexico ${ }^{\dagger}$	-	0	2	6	8	-	0	2	5	5	-	0	1	1	-
Utah	-	0	3	15	22	-	0	1	2	8	-	0	1	3	4
Wyoming ${ }^{\dagger}$	-	0	2	5	4	-	0	1	-	2	-	0	0	-	-
Pacific	3	5	19	204	140	4	5	10	184	132	8	3	19	139	117
Alaska	-	0	2	2	1	-	0	1	5	5	-	0	1	2	2
California	2	4	19	175	106	4	3	10	125	84	7	2	13	98	86
Hawaii	-	0	1	1	1	N	0	0	N	N	-	0	1	1	1
Oregon	-	0	3	11	13	-	1	4	45	33	-	0	1	9	11
Washington	1	0	4	15	19	-	0	3	9	10	1	0	5	29	17
Territories															
American Samoa	-	0	0	-	-	N	0	0	N	N	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	0	1	-	1	N	0	0	N	N	-	0	2	4	5
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2010 is provisional.
${ }^{\dagger}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Meningococcal disease, invasive ${ }^{\dagger}$ All groups					Pertussis					Rabies, animal				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	9	16	43	572	731	254	291	1,756	13,871	12,219	15	70	144	2,678	4,235
New England	-	0	2	13	27	-	8	20	337	534	-	4	24	178	274
Connecticut	-	0	2	2	3	-	1	8	90	42	-	0	22	59	123
Maine ${ }^{\text {§ }}$	-	0	1	3	4	-	0	5	36	75	-	1	4	49	44
Massachusetts	-	0	1	3	12	-	4	11	164	307	-	0	0	-	-
New Hampshire	-	0	0	-	3	-	0	3	14	65	-	0	5	12	27
Rhode Island ${ }^{\S}$	-	0	0	-	4	-	0	8	22	35	-	0	2	14	35
Vermont ${ }^{\text {§ }}$	-	0	1	5	1	-	0	4	11	10	-	1	5	44	45
Mid. Atlantic	-	1	4	47	80	40	22	63	1,090	940	8	18	41	834	486
New Jersey	-	0	2	9	15	-	3	8	90	192	-	0	0	-	-
New York (Upstate)	-	0	3	9	17	22	8	27	396	167	8	9	19	412	369
New York City	-	0	2	14	13	-	0	11	66	77	-	2	12	112	17
Pennsylvania	-	0	2	15	35	18	9	39	538	504	-	5	24	310	100
E.N. Central	1	2	8	101	133	81	68	173	3,509	2,571	2	2	38	261	211
Illinois	-	0	4	17	34	-	11	29	559	548	1	1	22	159	79
Indiana	-	0	3	22	28	-	9	26	426	293	-	0	0	-	25
Michigan	-	0	2	16	18	17	22	51	989	684	1	1	5	59	63
Ohio	1	1	2	26	33	63	21	69	1,202	901	-	0	12	43	44
Wisconsin	-	0	2	20	20	1	6	16	333	145	-	0	0	-	-
W.N. Central	-	1	6	41	59	61	26	627	1,496	1,778	1	4	16	200	328
lowa	-	0	3	9	8	-	6	25	335	189	-	0	2	7	29
Kansas	-	0	2	6	10	-	3	9	120	203	-	1	4	53	66
Minnesota	-	0	2	2	11	53	0	601	539	366	-	0	9	26	49
Missouri	-	0	3	17	20	5	8	25	282	844	1	1	6	62	61
Nebraska ${ }^{\text {§ }}$	-	0	2	5	7	3	2	13	156	123	-	1	4	43	72
North Dakota	-	0	1	2	1	-	0	30	38	17	-	0	7	9	4
South Dakota	-	0	2	-	2	-	1	5	26	36	-	0	2	-	47
S. Atlantic	2	3	7	110	135	13	28	77	1,188	1,342	1	22	73	836	1,756
Delaware	-	0	1	2	2	-	0	4	9	12	-	0	0	-	-
District of Columbia	-	0	0	-	-	-	0	1	4	5	-	0	0	-	-
Florida	1	1	5	50	44	2	5	28	251	443	-	0	60	72	161
Georgia	-	0	2	9	27	2	3	18	184	201	-	0	13	-	333
Maryland ${ }^{\text {§ }}$	1	0	1	6	9	2	2	8	94	116	-	6	13	276	323
North Carolina	-	0	2	14	25	-	1	32	124	165	-	0	12	-	403
South Carolina ${ }^{\text {§ }}$	-	0	1	10	11	1	5	19	282	212	-	0	0	-	
Virginia§	-	0	2	17	12	2	5	15	174	163	-	10	25	430	443
West Virginia	-	0	2	2	5	4	1	13	66	25	1	1	6	58	93
E.S. Central	2	1	4	33	25	4	14	30	575	667	1	3	7	123	123
Alabama ${ }^{\text {§ }}$	-	0	2	6	7	1	4	8	154	261	1	0	4	41	-
Kentucky	1	0	2	15	4	-	4	13	206	194	-	0	4	16	42
Mississippi	-	0	1	3	3	-	1	6	48	56	-	0	1	1	4
Tennessee ${ }^{\text {§ }}$	1	0	2	9	11	3	4	10	167	156	-	1	4	65	77
W.S.Central	-	1	9	65	66	29	57	753	2,217	2,540	-	1	30	61	746
Arkansas ${ }^{\text {§ }}$	-	0	2	5	6	-	3	29	119	287	-	0	7	21	38
Louisiana	-	0	4	12	13	-	1	4	25	131	-	0	0	-	-
Oklahoma	-	0	7	15	8	2	0	41	53	40	-	0	30	40	30
Texas ${ }^{\S}$	-	1	7	33	39	27	49	681	2,020	2,082	-	0	26	-	678
Mountain	1	1	6	45	54	6	22	41	963	777	1	1	8	63	93
Arizona	-	0	2	11	12	2	7	14	293	195	-	0	5	-	-
Colorado	1	0	4	14	18	4	3	15	171	185	-	0	0	-	-
Idahos ${ }^{\text {® }}$	-	0	2	7	6	-	3	19	165	67	-	0	2	10	8
Montana ${ }^{\text {§ }}$	-	0	1	1	5	-	1	12	60	47	-	0	3	15	25
Nevada ${ }^{\text {§ }}$	-	0	1	8	4	-	0	7	29	23	-	0	1	4	6
New Mexicos	-	0	1	3	3	-	2	9	82	57	1	0	3	11	21
Utah	-	0	1	1	2	-	4	10	153	181	-	0	2	2	12
Wyoming ${ }^{\text {§ }}$	-	0	1	-	4	-	0	2	10	22	-	0	4	21	21
Pacific	3	3	16	117	152	20	35	186	2,496	1,070	1	3	12	122	218
Alaska	-	0	1	1	6	-	0	6	35	36	-	0	2	12	11
California	2	2	13	77	99	-	25	166	1,844	537	-	2	12	99	196
Hawaii	-	0	1	1	5	-	0	6	37	34	-	0	0	-	-
Oregon	-	1	3	25	29	1	6	16	271	228	1	0	2	11	11
Washington	1	0	7	13	13	19	4	38	309	235	-	0	0	-	-
Territories															
American Samoa	-	0	0	-	-	-	0	0	-	-	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	2	-	-	-	0	0	-	-
Puerto Rico	-	0	1	-	-	-	0	1	2	1	-	1	3	36	34
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2010 is provisional.
${ }^{\dagger}$ Data for meningococcal disease, invasive caused by serogroups A, C, Y, and W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I.
${ }^{5}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Salmonellosis					Shiga toxin-producing E. coli (STEC) ${ }^{\dagger}$					Shigellosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	860	915	1,677	37,623	37,671	67	80	205	3,553	3,682	252	253	527	10,479	12,468
New England	-	29	405	1,719	1,878	-	2	49	158	224	-	4	58	255	296
Connecticut	-	0	389	389	430	-	0	49	49	67	-	0	52	52	43
Maine ${ }^{\text {® }}$	-	2	7	97	108	-	0	3	15	16	-	0	1	5	5
Massachusetts	-	21	48	945	934	-	1	8	62	84	-	4	16	179	204
New Hampshire	-	3	10	135	231	-	0	2	17	32	-	0	2	9	18
Rhode Island ${ }^{\text {® }}$	-	2	17	97	119	-	0	26	2	1	-	0	3	9	21
Vermont§	-	1	5	56	56	-	0	2	13	24	-	0	1	1	5
Mid. Atlantic	58	97	217	4,533	4,461	7	7	31	410	363	12	34	53	1,287	2,350
New Jersey	-	18	56	828	945	-	1	4	48	89	-	6	16	257	514
New York (Upstate)	40	24	78	1,161	1,056	6	3	15	160	120	4	4	19	180	178
New York City	4	25	56	1,073	1,022	-	1	7	59	53	-	6	13	235	369
Pennsylvania	14	29	82	1,471	1,438	1	2	13	143	101	8	16	35	615	1,289
E.N. Central	32	80	235	4,077	4,269	1	12	39	605	619	5	26	238	1,368	2,181
Illinois	-	26	113	1,399	1,215	-	1	8	90	151	-	9	228	663	510
Indiana	7	10	53	369	501	-	1	8	61	76	-	1	5	31	59
Michigan	7	15	45	744	806	-	2	16	144	117	2	4	9	188	190
Ohio	24	24	47	1,072	1,179	1	2	11	119	110	3	6	23	249	969
Wisconsin	1	10	43	493	568	-	3	17	191	165	-	5	21	237	453
W.N. Central	15	45	99	1,934	2,161	10	10	39	511	625	11	48	88	1,755	786
lowa	-	8	35	418	340	1	2	16	137	140	-	1	5	46	47
Kansas	-	7	18	347	328	-	1	6	52	49	-	4	14	197	165
Minnesota	-	1	32	178	461	-	0	14	31	171	-	0	5	14	62
Missouri	11	12	44	657	536	7	3	27	204	117	10	42	75	1,461	480
Nebraska§	4	4	13	189	293	2	1	6	62	80	1	0	4	30	25
North Dakota	-	0	39	31	38	-	0	7	-	4		0	5	-	3
South Dakota	-	3	8	114	165	-	0	4	25	64	-	0	2	7	4
S. Atlantic	353	267	572	11,132	10,545	9	13	30	537	533	81	41	92	1,910	1,915
Delaware	1	3	11	143	111	-	0	2	4	12	-	1	10	37	103
District of Columbia	-	1	5	57	80	-	0	1	5	2	-	0	4	21	20
Florida	227	127	227	4,650	4,607	3	4	13	185	134	54	13	49	827	363
Georgia	42	40	129	1,960	1,883	-	1	15	85	55	18	13	38	585	512
Maryland ${ }^{\S}$	16	15	52	811	639	1	1	6	70	73	3	3	8	102	323
North Carolina	26	29	145	1,334	1,456	4	1	7	51	91	2	2	18	150	335
South Carolina§	26	20	84	1,180	775	-	0	3	18	27	3	1	5	58	98
Virginia§ ${ }^{\text {a }}$	15	18	68	852	819	1	2	15	103	115	1	3	15	115	155
West Virginia	-	3	16	145	175	-	0	4	16	24	-	0	8	15	6
E.S. Central	32	51	171	2,723	2,472	4	4	11	191	174	8	12	40	515	661
Alabama ${ }^{\S}$	-	14	44	620	706	-	1	4	36	40	-	3	10	111	123
Kentucky	4	8	31	447	374	1	1	6	49	60	-	4	28	189	169
Mississippi	5	14	68	877	757	-	0	2	13	6	-	1	4	34	39
Tennessee ${ }^{\S}$	23	14	50	779	635	3	2	7	93	68	8	4	11	181	330
W.S.Central	117	114	547	4,428	4,403	8	5	68	230	237	83	48	251	1,907	2,338
Arkansas ${ }^{\text {® }}$	8	10	42	582	500	-	1	5	43	34	2	1	9	49	254
Louisiana	-	20	47	865	917	-	0	2	12	20	-	4	13	191	153
Oklahoma	19	10	46	515	503	1	0	27	20	23	7	6	96	225	229
Texas ${ }^{\S}$	90	74	477	2,466	2,483	7	3	41	155	160	74	35	144	1,442	1,702
Mountain	17	48	105	2,112	2,441	6	9	33	452	483	7	15	32	599	958
Arizona	7	18	42	734	832	2	1	5	55	53	3	8	18	318	689
Colorado	7	10	23	454	510	1	2	18	152	146	4	2	6	95	80
Idaho ${ }^{\text {§ }}$	1	3	9	127	149	3	1	7	73	79	-	0	3	22	7
Montana§	-	2	7	72	94	-	1	5	35	31	-	0	1	6	11
Nevadas	-	4	20	233	211	-	0	5	28	30	-	0	7	34	64
New Mexico ${ }^{\text {§ }}$	1	5	15	217	307	-	1	5	33	32	-	2	9	91	89
Utah	-	5	17	238	265	-	1	7	63	99	-	1	4	33	16
Wyoming ${ }^{\text {§ }}$	1	1	9	37	73	-	0	2	13	13	-	0	2	-	2
Pacific	236	115	299	4,965	5,041	22	9	46	459	424	45	21	64	883	983
Alaska	-	1	5	68	55	-	0	1	2	1	-	0	2	1	2
California	202	84	227	3,771	3,759	10	5	35	204	201	37	16	51	728	788
Hawaii	-	4	14	145	269	-	0	4	18	5	-	0	3	15	35
Oregon	1	8	48	419	354	-	2	7	76	67	-	1	4	46	43
Washington	33	14	61	562	604	12	3	18	159	150	8	1	22	93	115
Territories															
American Samoa	-	1	1	2	-	-	0	0	-	-	-	1	1	2	3
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	1	4	11	-	0	0	-	-	-	0	3	1	7
Puerto Rico	3	10	39	397	454	-	0	0	-	-	-	0	1	4	11
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2010 is provisional.
† Includes E. coli O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Spotted Fever Rickettsiosis (including RMSF) ${ }^{\dagger}$									
	Confirmed					Probable				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$
		Med	Max				Med	Max		
United States	4	2	12	135	132	10	17	421	1,186	1,157
New England	-	0	0	-	2	-	0		3	9
Connecticut	-	0	0	-	-	-	0	0	-	-
Maine ${ }^{\text {§ }}$	-	0	0	-	-	-	0	1	2	4
Massachusetts	-	0	0	-	1	-	0	1	-	5
New Hampshire	-	0	0	-	-	-	0	1	1	-
Rhode Island ${ }^{\S}$	-	0	0	-	-	-	0	0	-	-
Vermont ${ }^{\S}$	-	0	0	-	1	-	0	0	-	-
Mid. Atlantic	-	0	2	15	11	-	1	4	48	88
New Jersey	-	0	0	-	2	-	0	2	-	56
New York (Upstate)	-	0	1	2	-	-	0	3	14	13
New York City	-	0	1	1	1	-	0	4	22	6
Pennsylvania	-	0	2	12	8	-	0	1	12	13
E.N. Central	-	0	1	4	9	1	1	9	84	79
Illinois	-	0	1	2	1	-	0	5	28	47
Indiana	-	0	1	2	3	1	0	5	41	10
Michigan	-	0	0	-	4	-	0	1	1	1
Ohio	-	0	0	-	-	-	0	2	13	17
Wisconsin	-	0	0	-	1	-	0	1	1	4
W.N. Central	-	0	5	17	18	2	2	21	260	245
lowa	-	0	0	-	1	-	0	1	4	4
Kansas	-	0	1	2	1	-	0	0	-	-
Minnesota	-	0	1	-	1	-	0	1	-	1
Missouri	-	0	5	13	7	2	2	20	252	236
Nebraska§	-	0	1	2	8	-	0	1	3	4
North Dakota	-	0	0	-	-	-	0	1	1	-
South Dakota	-	0	0	-	-	-	0	0	-	-
S. Atlantic	1	1	9	67	62	5	6	60	408	346
Delaware	-	0	1	1	-	-	0	3	16	16
District of Columbia	-	0	0	-	-	-	0	1	-	-
Florida	-	0	1	3	-	2	0	1	10	5
Georgia	-	0	6	45	48	-	0	0	-	-
Maryland ${ }^{\text {§ }}$	-	0	1	2	3	-	0	4	39	34
North Carolina	-	0	3	11	7	2	1	48	224	228
South Carolina ${ }^{\S}$	-	0	1	1	3	-	0	2	10	15
Virginia§	1	0	2	4	1	1	1	11	109	46
West Virginia	-	0	0	-	-	-	0	0	-	2
E.S. Central	3	0	3	20	7	2	3	28	316	241
Alabama§		0	1	4	3	2	1	8	61	59
Kentucky	-	0	2	6	1	-	0	0	-	-
Mississippi	-	0	0	-	-	-	0	2	8	9
Tennessee§	3	0	2	10	3	2	3	20	247	173
W.S. Central	-	0	3	4	8	-	1	408	60	125
Arkansas§	-	0	1	-	-	-	0	110	20	62
Louisiana	-	0	0	-	-	-	0	1	2	2
Oklahoma	-	0	3	3	6	-	0	287	22	43
Texas§	-	0	1	1	2	-	0	11	16	18
Mountain	-	0	2	2	14	-	0	2	7	24
Arizona	-	0	2	-	8	-	0	1	1	12
Colorado	-	0	0	-	1	-	0	1	1	-
Idaho ${ }^{\text {§ }}$	-	0	0	-	-	-	0	1	2	1
Montana§	-	0	1	2	4	-	0	1	1	6
Nevada ${ }^{\text {§ }}$	-	0	0	-	-	-	0	0	-	1
New Mexico ${ }^{\S}$	-	0	0	-	-	-	0	1	1	1
Utah	-	0	0	-	1	-	0	1	1	1
Wyoming ${ }^{\S}$	-	0	0	-	1	-	0	0	-	2
Pacific	-	0	2	6	1	-	0	0	-	-
Alaska	N	0	0	N	N	N	0	0	N	N
California	-	0	2	5	1	-	0	0	-	-
Hawaii	N	0	0	N	N	N	0	0	N	N
Oregon	-	0	1	1	-	-	0	0	-	-
Washington	-	0	0	-	-	-	0	0	-	-
Territories										
American Samoa	N	0	0	N	N	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-
Guam	N	0	0	N	N	N	0	0	N	N
Puerto Rico	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. 一: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2010 is provisional.
\dagger Illnesses with similar clinical presentation that result from Spotted fever group rickettsia infections are reported as Spotted fever rickettsioses. Rocky Mountain spotted fever (RMSF) caused by Rickettsia rickettsii, is the most common and well-known spotted fever.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Streptococcus pneumoniae, ${ }^{\dagger}$ invasive disease										Syphilis, primary and secondary				
	All ages					Age <5									
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		Cum	Cum
		Med	Max				Med	Max				Med	Max	2010	2009
United States	111	191	495	10,795	2,300	15	51	156	1,678	1,784	83	242	413	9,208	10,925
New England	1	7	99	575	43	-	1	24	77	59	4	8	22	345	248
Connecticut	-	0	92	254	-	-	0	22	24	-	-	1	10	69	45
Maine ${ }^{\text {§ }}$	-	2	6	92	14	-	0	1	8	6	1	0	3	23	2
Massachusetts	-	0	5	54	3	-	1	4	37	37	2	5	15	207	178
New Hampshire	-	0	7	59	-	-	0	1	3	10	1	0	1	16	13
Rhode Island ${ }^{\text {§ }}$	-	0	35	54	15	-	0	2	2	2	-	0	4	28	10
Vermont ${ }^{\text {§ }}$	1	1	6	62	11	-	0	1	3	4	-	0	2	2	-
Mid. Atlantic	8	19	54	944	150	3	7	48	264	228	24	33	45	1,325	1,382
New Jersey	-	1	8	82	-	-	1	5	42	44	5	4	12	185	176
New York (Upstate)	5	3	12	128	60	3	2	19	91	99	1	2	11	104	93
New York City	1	5	25	360	10	-	1	24	88	71	12	18	31	753	848
Pennsylvania	2	7	22	374	80	-	1	5	43	14	6	7	16	283	265
E.N.Central	35	32	98	2,180	514	5	8	18	271	298	-	27	46	1,006	1,205
Illinois	-	1	7	70	-	-	2	5	63	47	-	9	23	327	583
Indiana	-	7	24	434	200	-	1	6	37	61	-	3	13	133	125
Michigan	8	9	27	521	22	2	2	6	64	56	-	4	12	160	189
Ohio	19	14	49	894	292	3	2	6	75	100	-	9	18	352	270
Wisconsin	8	5	22	261	-	-	1	4	32	34	-	1	3	34	38
W.N. Central	4	8	182	611	150	-	2	12	109	146	-	5	17	242	249
lowa	-	0	0	-	-	-	0	0	-	-	-	0	2	9	20
Kansas	-	1	7	75	49	-	0	2	12	16	-	0	3	13	27
Minnesota	-	0	179	287	38	-	0	10	44	69	-	1	9	96	57
Missouri	-	2	10	89	52	-	0	3	31	39	-	3	9	115	137
Nebraska§	4	1	7	101	2	-	0	2	13	10	-	0	2	7	5
North Dakota	-	0	11	44	7	-	0	1	2	4	-	0	1	-	3
South Dakota	-	0	3	15	2	-	0	2	7	8	-	0	1	2	-
S. Atlantic	40	49	144	2,565	1,038	4	12	28	425	427	19	54	218	2,149	2,624
Delaware	-	0	3	28	18	-	0	0	-	3	-	0	2	4	24
District of Columbia	-	0	4	21	17	-	0	2	7	3	-	2	8	99	142
Florida	24	20	89	1,158	604	4	3	18	156	152	3	19	42	799	815
Georgia	1	10	28	421	308	-	3	12	117	114	-	9	167	383	622
Maryland ${ }^{\text {§ }}$	10	7	31	407	4	-	1	6	44	65	6	6	12	234	234
North Carolina	-	0	0	-	-	-	0	0	-	-	-	7	31	286	441
South Carolina ${ }^{\text {§ }}$	5	6	25	394	-	-	1	4	42	38	1	2	7	109	98
Virginia§	-	0	4	44	-	-	1	4	42	34	9	4	22	231	244
West Virginia	-	1	21	92	87	-	0	4	17	18	-	0	2	4	4
E.S. Central	9	20	50	966	213	1	2	8	96	111	6	18	39	683	897
Alabama ${ }^{\text {§ }}$	-	0	0	-	-	-	0	0	-	7	4	5	12	186	348
Kentucky	-	3	16	150	58	-	0	2	13	7	1	2	13	99	50
Mississippi	-	1	6	46	40	-	0	2	10	21	-	4	17	160	168
Tennessee§	9	13	44	770	115	1	2	7	73	83	1	5	17	238	331
W.S.Central	1	18	91	1,362	96	1	5	41	222	262	21	37	58	1,430	2,223
Arkansas ${ }^{\text {§ }}$	-	2	9	127	44	-	0	3	13	35	3	3	13	124	195
Louisiana	-	1	8	67	52	-	0	3	20	20	2	7	23	299	640
Oklahoma	1	0	5	40	-	1	1	5	40	50	2	2	6	62	74
Texas ${ }^{\text {8 }}$	-	15	83	1,128	-	-	3	34	149	157	14	25	42	945	1,314
Mountain	12	21	82	1,360	93	1	5	12	185	226	3	9	22	376	422
Arizona	1	8	51	623	-	-	2	7	79	101	-	3	7	124	190
Colorado	11	7	20	411	-	1	1	4	54	33	2	2	5	94	77
Idaho§	-	0	2	11	-	-	0	2	5	7	-	0	1	2	3
Montana ${ }^{\text {§ }}$	-	0	2	16	-	-	0	1	1	-	-	0	1	1	1
Nevada ${ }^{\text {§ }}$	-	1	4	60	35	-	0	1	5	7	1	1	9	86	81
New Mexico§	-	2	9	119	-	-	0	4	14	25	-	1	4	37	43
Utah	-	2	9	111	49	-	1	4	24	52	-	1	4	32	24
Wyoming ${ }^{\text {§ }}$	-	0	1	9	9	-	0	1	3	1	-	0	0	,	3
Pacific	1	5	14	232	3	-	0	7	29	27	6	42	60	1,652	1,675
Alaska	-	1	9	88	-	-	0	5	18	18	-	0	1	1	-
California	1	3	12	144	-	-	0	2	11	-	5	37	55	1,419	1,492
Hawaii	-	0	0	-	3	-	0	1	-	9	-	0	3	27	26
Oregon	-	0	0	-	-	-	0	0	-	-	-	1	6	52	42
Washington	-	0	0	-	-	-	0	0	-	-	1	3	10	153	115
Territories															
American Samoa	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	0	0	-	-	-	0	0	-	-	-	4	15	177	171
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2010 is provisional.
\dagger Includes drug resistant and susceptible cases of invasive Streptococcus pneumoniae disease among children <5 years and among all ages. Case definition: Isolation of S. pneumoniae from
a normally sterile body site (e.g., blood or cerebrospinal fluid).
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 9, 2010, and October 10, 2009 (40th week)*

Reporting area	Varicella (chickenpox)§					West Nile virus disease ${ }^{\dagger}$									
						Neuroinvasive					Nonneuroinvasive ${ }^{\text {f }}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	$\underline{\text { Previous } 52 \text { weeks }}$		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	146	319	548	10,893	16,648	-	0	66	421	380	-	1	44	284	330
New England	2	15	36	536	861	-	0	3	10	-	-	0	1	2	-
Connecticut	-	6	20	240	404	-	0	2	6	-	-	0	1	1	-
Maine ${ }^{\text {§ }}$	-	3	15	157	172	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	0	1	-	4	-	0	2	3	-	-	0	1	1	-
New Hampshire	-	2	8	98	167	-	0	1	1	-	-	0	0	-	-
Rhode Island ${ }^{\S}$	-	1	12	23	31	-	0	0	-	-	-	0	0	-	-
Vermont ${ }^{\text {§ }}$	2	0	10	18	83	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	14	32	62	1,226	1,654	-	0	17	107	9	-	0	10	48	1
New Jersey	1	9	30	424	344	-	0	3	13	3	-	0	6	11	-
New York (Upstate)	N	0	0	N	N	-	0	9	49	3	-	0	6	25	1
New York City	-	0	0	-	-	-	0	7	32	3	-	0	4	8	-
Pennsylvania	13	22	39	802	1,310	-	0	3	13	-	-	0	1	4	-
E.N. Central	50	106	176	3,632	5,172	-	0	9	39	9	-	0	5	18	4
Illinois	3	25	49	946	1,267	-	0	8	20	5	-	0	3	5	-
Indiana§	-	5	35	330	379	-	0	1	1	2	-	0	2	6	2
Michigan	9	35	62	1,074	1,479	-	0	5	17	1	-	0	1	4	-
Ohio	37	28	56	1,010	1,561	-	0	1	1	-	-	0	1	1	2
Wisconsin	1	7	22	272	486	-	0	0	-	1	-	0	1	2	-
W.N. Central	3	15	40	601	1,067	-	0	7	25	26	-	0	8	59	73
lowa	N	0	0	N	N	-	0	1	2	-	-	0	1	3	5
Kansas ${ }^{\S}$	-	6	22	224	451	-	0	1	1	4	-	0	2	5	9
Minnesota	-	0	0	-	-	-	0	1	3	1	-	0	1	2	3
Missouri	3	7	23	320	516	-	0	1	3	4	-	0	0	-	1
Nebraska§	N	0	0	N	N	-	0	3	10	11	-	0	7	27	39
North Dakota	-	0	26	32	57	-	0	2	2	-	-	0	1	6	1
South Dakota	-	0	7	25	43	-	0	2	4	6	-	0	3	16	15
S. Atlantic	17	37	99	1,693	2,124	-	0	4	21	16	-	0	3	9	2
Delaware§		0	4	21	11	-	0	0	-	-	-	0	0	-	-
District of Columbia	-	0	4	17	27	-	0	0	-	2	-	0	0	-	-
Florida ${ }^{\S}$	13	15	57	839	996	-	0	2	6	2	-	0	1	1	1
Georgia	N	0	0	N	N	-	0	1	4	4	-	0	3	7	-
Maryland ${ }^{\S}$	N	0	0	N	N	-	0	3	9	-	-	0	1	1	1
North Carolina	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
South Carolina ${ }^{\text {§ }}$	-	0	35	75	93	-	0	0	-	3	-	0	0	-	-
Virginia ${ }^{\text {§ }}$	3	11	34	391	606	-	0	1	2	5	-	0	0	-	-
West Virginia	1	8	26	350	391	-	0	0	-	-	-	0	0	-	-
E.S. Central	2	6	28	232	460	-	0	1	6	36	-	0	2	8	26
Alabama§	2	6	27	225	455	-	0	1	1	-	-	0	1	2	-
Kentucky	N	0	0	N	N	-	0	1	2	3	-	0	1	1	-
Mississippi	-	0	2	7	5	-	0	1	2	29	-	0	2	4	21
Tennessee ${ }^{\text {§ }}$	N	0	0	N	N	-	0	1	1	4	-	0	1	1	5
	50	51	285	2,145	4,100	-	0	13	61	116	-	0	3	12	35
Arkansas ${ }^{\text {§ }}$	5	3	32	122	417	-	0	3	6	6	-	0	0	-	-
Louisiana	-	1	5	40	117	-	0	3	12	10	-	0	1	6	11
Oklahoma	N	0	0	N	N	-	0	0	-	8	-	0	0	\checkmark	2
Texas§	50	41	272	1,983	3,566	-	0	13	43	92	-	0	2	6	22
Mountain	8	20	36	789	1,119	-	0	12	110	77	-	0	14	105	123
Arizona	-	0	0	-	-	-	0	10	74	12	-	0	9	51	8
Colorado§	6	8	16	317	433	-	0	5	22	36	-	0	10	44	67
Idahos	N	0	0	N	N	-	0	0	,	9	-	0	1	1	29
Montana§	-	3	17	160	128	-	0	0	-	2	-	0	0	-	3
Nevada§	N	0	0	N	N	-	0	0	-	7	-	0	1	2	5
New Mexico ${ }^{\text {§ }}$	-	2	8	86	99	-	0	4	13	6	-	0	2	3	2
Utah	2	5	22	213	459	-	0	0		1	-	0	0	-	1
Wyoming ${ }^{\S}$	-	0	3	13	-	-	0	1	1	4	-	0	1	4	8
Pacific	-	1	5	39	91	-	0	7	42	91	-	0	4	23	66
Alaska	-	0	5	31	54	-	0	0	-	91	-	0	0	-	6
California	-	0	0	-	-	-	0	7	42	64	-	0	4	23	44
Hawaii	-	0	2	8	37	-	0	0	-	-	-	0	0	-	-
Oregon	N	0	0	N	N	-	0	0	-	1	-	0	0	-	10
Washington	N	0	0	N	N	-	0	0	-	26	-	0	0	-	12
Territories															
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	N	-	-	12	N	-	-	-	-	-	-	-	-	-	-
Guam	-	0	3	12	20	-	0	0	-	-	-	0	0	-	-
Puerto Rico	5	9	30	471	442	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2010 is provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly.
 serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).
 associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/ncphi/disss/nndss/phs/infdis.htm.

TABLE III. Deaths in 122 U.S. cities,* week ending October 9, 2010 (40th week)

	All causes, by age (years)						P\& ${ }^{\dagger}$ Total	Reporting area	All causes, by age (years)						P\& ${ }^{\dagger}$ Total
Reporting area	All Ages	≥ 65	45-64	25-44	1-24	<1			All Ages	≥ 65	45-64	25-44	1-24	<1	
New England	546	358	137	33	11	7	45	S. Atlantic	1,183	739	291	77	27	26	66
Boston, MA	126	70	41	6	5	4	12	Atlanta, GA	169	110	34	19	5	1	5
Bridgeport, CT	30	22	4	2	1	1	6	Baltimore, MD	136	76	41	13	3	3	11
Cambridge, MA	19	16	1	1	1	-	-	Charlotte, NC	97	69	23	4	-	1	5
Fall River, MA	25	21	3	1	-	-	3	Jacksonville, FL	165	112	34	10	4	5	12
Hartford, CT	38	27	8	2	1	-	1	Miami, FL	99	64	9	-	4	-	-
Lowell, MA	23	19	2	2	-	-	2	Norfolk, VA	49	33	12	-	2	1	1
Lynn, MA	7	4	2	1	-	-	-	Richmond, VA	69	42	19	6	2	-	7
New Bedford, MA	29	18	10	1	-	-	1	Savannah, GA	57	31	16	5	1	4	7
New Haven, CT	36	24	10	1	1	-	3	St. Petersburg, FL	59	33	16	5	3	2	4
Providence, RI	69	42	16	8	2	1	4	Tampa, FL	157	101	45	6	1	4	5
Somerville, MA	3	3	-	-	-	-	-	Washington, D.C.	115	61	39	8	2	5	6
Springfield, MA	53	33	15	4	-	1	2	Wilmington, DE	11	7	3	1	-	-	3
Waterbury, CT	33	24	8	1	-	-	2	E.S. Central	893	589	215	55	17	17	70
Worcester, MA	55	35	17	3	-	-	9	Birmingham, AL	176	108	46	15	3	4	14
Mid. Atlantic	1,882	1,263	419	112	52	34	89	Chattanooga, TN	84	56	21	4	1	2	3
Albany, NY	35	26	4	3	-	2	1	Knoxville, TN	140	96	35	5	2	2	10
Allentown, PA	21	16	5	-	-	-	-	Lexington, KY	63	44	14	1	-	4	6
Buffalo, NY	77	53	18	5	1	-	3	Memphis, TN	160	96	43	15	5	1	16
Camden, NJ	32	15	11	2	3	1	-	Mobile, AL	112	77	16	12	4	3	6
Elizabeth, NJ	11	8	3	-	-	-	1	Montgomery, AL	44	34	9	-	-	1	5
Erie, PA	46	36	9	-	1	-	3	Nashville, TN	114	78	31	3	2	-	10
Jersey City, NJ	22	12	7	3	-	-	1	W.S. Central	1,268	802	327	73	34	31	100
New York City, NY	949	644	209	49	28	17	39	Austin, TX	78	50	16	6	2	4	5
Newark, NJ	U	U	U	U	U	U	U	Baton Rouge, LA	72	60	8	3	1	-	-
Paterson, NJ	20	14	2	3	-	1	2	Corpus Christi, TX	38	26	7	2	-	3	3
Philadelphia, PA	382	224	96	34	16	12	13	Dallas, TX	156	97	47	6	4	2	11
Pittsburgh, PA§	36	24	8	3	1	-	4	El Paso, TX	98	65	19	10	3	1	3
Reading, PA	36	25	10	-	-	1	3	Fort Worth, TX	U	U	U	U	U	U	U
Rochester, NY	29	17	10	1	1	-	3	Houston, TX	387	216	119	18	16	17	52
Schenectady, NY	21	18	2	1	-	-	-	Little Rock, AR	58	38	16	3	-	1	-
Scranton, PA	33	30	3	-	-	-	1	New Orleans, LA	U	U	U	U	U	U	U
Syracuse, NY	58	45	10	2	1	-	7	San Antonio, TX	241	148	66	18	7	2	19
Trenton, NJ	33	24	4	5	-	-	2	Shreveport, LA	40	31	6	2	-	1	3
Utica, NY	12	8	3	1	-	-	1	Tulsa, OK	100	71	23	5	1	-	4
Yonkers, NY	29	24	5	-	-	-	5	Mountain	815	528	190	61	23	9	38
E.N. Central	1,862	1,226	446	102	51	37	110	Albuquerque, NM	110	75	26	7	2	-	10
Akron, OH	41	23	11	2	3	2	2	Boise, ID	46	34	5	2	3	2	3
Canton, OH	39	29	6	2	1	1	3	Colorado Springs, CO	41	28	8	1	4	-	-
Chicago, IL	210	132	55	20	3	-	15	Denver, CO	80	42	26	7	3	2	-
Cincinnati, OH	98	56	27	4	4	7	4	Las Vegas, NV	216	122	63	21	8	1	10
Cleveland, OH	270	194	56	11	8	1	11	Ogden, UT	33	27	3	2	-	1	1
Columbus, OH	214	131	55	8	10	10	10	Phoenix, AZ	U	U	U	U	U	U	U
Dayton, OH	140	99	35	4	-	2	12	Pueblo, CO	38	29	8	1	-	-	3
Detroit, MI	127	62	45	15	4	1	5	Salt Lake City, UT	125	88	19	13	2	3	6
Evansville, IN	43	34	8	-	1	-	4	Tucson, AZ	126	83	32	7	1	-	5
Fort Wayne, IN	92	66	17	5	4	-	7	Pacific	1,608	1,081	385	82	28	32	129
Gary, IN	6	4	2	-	-	-	-	Berkeley, CA	12	9	2	-	-	1	1
Grand Rapids, MI	42	31	8	3	-	-	4	Fresno, CA	112	77	23	6	2	4	10
Indianapolis, IN	209	135	54	11	5	4	13	Glendale, CA	30	25	4	1	-	-	7
Lansing, MI	52	44	7	1	-	-	3	Honolulu, HI	45	27	11	4	1	2	4
Milwaukee, WI	78	48	21	5	1	3	7	Long Beach, CA	62	40	18	1	2	1	6
Peoria, IL	U	U	U	U	U	U	U	Los Angeles, CA	238	135	77	17	4	5	22
Rockford, IL	55	37	12	2	1	3	3	Pasadena, CA	24	21	3	-	-	-	2
South Bend, IN	41	28	6	3	2	2	2	Portland, OR	98	69	21	8	-	-	5
Toledo, OH	105	73	21	6	4	1	5	Sacramento, CA	234	155	64	8	4	3	20
Youngstown, OH	U	U	U	U	U	U	U	San Diego, CA	151	99	32	11	1	8	8
W.N. Central	670	434	176	33	16	11	53	San Francisco, CA	105	68	27	4	4	2	13
Des Moines, IA	112	75	30	3	3	1	9	San Jose, CA	161	129	23	4	2	3	8
Duluth, MN	35	30	4	-	-	1	6	Santa Cruz, CA	37	21	10	5	1	-	3
Kansas City, KS	24	12	9	3	-	-	2	Seattle, WA	122	76	34	6	4	2	9
Kansas City, MO	105	63	30	6	2	4	9	Spokane, WA	65	46	14	4	1	-	6
Lincoln, NE	42	36	6	-	-	-	2	Tacoma, WA	112	84	22	3	2	1	5
Minneapolis, MN	60	38	18	3	1	-	3	Total ${ }^{\text {¹ }}$	10,727	7,020	2,586	628	259	204	700
Omaha, NE	79	55	16	5	2	1	7								
St. Louis, MO	87	39	32	10	3	3	4								
St. Paul, MN	49	33	13	-	3	-	5								
Wichita, KS	77	53	18	3	2	1	6								

J: Unavailable. -: No reported cases.
 by the week that the death certificate was filed. Fetal deaths are not included.
† Pneumonia and influenza.
Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
I Total includes unknown ages.

TABLE IV. Provisional cases of selected notifiable disease,* United States, third quarter ending October 2, 2010 (39th week)

Reporting area	Tuberculosis ${ }^{\dagger}$				
	Current quarter	Previous 4 quarters		Cum 2010	Cum 2009
		Min	Max		
United States	1,014	1,014	3,201	4,954	8,197
New England	40	40	106	195	285
Connecticut	4	4	26	38	69
Maine	-	0	4	5	8
Massachusetts	33	33	67	126	174
New Hampshire	-	0	3	6	14
Rhode Island	3	3	9	19	16
Vermont	-	0	2	1	4
Mid. Atlantic	182	182	466	898	1,177
New Jersey	114	47	139	254	266
New York (Upstate)	34	34	60	135	190
New York City	-	0	198	392	565
Pennsylvania	34	24	76	117	156
E.N. Central	42	42	289	309	632
Illinois	-	0	175	60	242
Indiana	22	12	36	58	82
Michigan	1	1	36	72	108
Ohio	3	3	41	74	144
Wisconsin	16	10	19	45	56
W.N. Central	37	37	99	150	255
lowa	3	3	9	18	33
Kansas	-	0	9	1	55
Minnesota	22	22	57	87	104
Missouri	-	0	10	11	29
Nebraska	7	3	14	18	18
North Dakota	-	0	2	-	3
South Dakota	5	3	7	15	13
S. Atlantic	282	282	581	1,229	1,643
Delaware	-	0	7	12	15
District of Columbia	4	4	13	21	29
Florida	86	86	233	528	643
Georgia	70	70	117	285	327
Maryland	55	42	76	148	142
North Carolina	-	0	68	-	180
South Carolina	22	10	53	85	120
Virginia	43	43	101	137	171
West Virginia	2	2	7	13	16
E.S. Central	131	97	174	381	394
Alabama	35	35	42	118	126
Kentucky	16	0	43	44	32
Mississippi	34	18	34	81	88
Tennessee	46	37	55	138	148
W.S. Central	60	60	545	573	1,332
Arkansas	3	3	30	31	52
Louisiana	41	7	85	111	108
Oklahoma	16	11	36	45	65
Texas	-	0	394	386	1,107
Mountain	41	41	165	211	372
Arizona	-	0	81	53	152
Colorado	11	8	27	37	58
Idaho	2	0	8	10	12
Montana	-	0	1	-	7
Nevada	21	1	43	65	79
New Mexico	5	5	14	30	35
Utah	2	2	10	15	27
Wyoming	-	0	1	1	2
Pacific	199	199	776	1,008	2,107
Alaska	-	0	15		22
California	132	132	636	720	1,749
Hawaii	23	23	25	71	92
Oregon	15	15	24	59	65
Washington	29	29	77	158	179
Territories					
American Samoa	-	0	1	-	2
C.N.M.I.	-	0	5	3	27
Guam	-	0	15	-	85
Puerto Rico	13	13	22	55	54
U.S. Virgin Islands	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
 data scheduled for this issue of MMWR is not being published in Table IV.

 low in some reporting jurisdictions as these areas continue to catch up with data entry and transmission to CDC during this transition.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, visit $M M W R$'s free subscription page at http://www.cdc.gov/mmwr/mmwrsubscribe.html. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.
Data presented by the Notifiable Disease Data Team and 122 Cities Mortality Data Team in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. Address all inquiries about the $M M W R$ Series, including material to be considered for publication, to Editor, $M M W R$ Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to mmwrq@cdc.gov.
All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

[^0]: *Alabama, Alaska, Arizona, Arkansas, Colorado, Connecticut, Florida, Georgia, Idaho, Indiana, Iowa, Kansas, Kentucky, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nebraska, New Hampshire, New Jersey, New Mexico, New York, Nevada, North Carolina, North Dakota, Ohio, Oklahoma, South Carolina, South Dakota, Tennessee, Texas, Utah, Virginia, West Virginia, Wisconsin, and Wyoming.

[^1]: The MMWR series of publications is published by the Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.
 Suggested citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2010;59:[inclusive page numbers].
 Centers for Disease Control and Prevention
 Thomas R. Frieden, MD, MPH, Director Harold W. Jaffe, MD, MA, Associate Director for Science
 James W. Stephens, PhD, Office of the Associate Director for Science
 Stephen B. Thacker, MD, MSc, Deputy Director for Surveillance, Epidemiology, and Laboratory Services
 MMWR Editorial and Production Staff
 Ronald L. Moolenaar, MD, MPH, Editor, MMWR Series
 John S. Moran, MD, MPH, Deputy Editor, MMWR Series Martha F. Boyd, Lead Visual Information Specialist
 Robert A. Gunn, MD, MPH, Associate Editor, MMWR Series Malbea A. LaPete, Stephen R. Spriggs, Terraye M. Starr Teresa F. Rutledge, Managing Editor, MMWR Series Visual Information Specialists Douglas W. Weatherwax, Lead Technical Writer-Editor Quang M. Doan, MBA, Phyllis H. King
 Donald G. Meadows, MA, Jude C. Rutledge, Writer-Editors
 Information Technology Specialists
 MMWR Editorial Board
 William L. Roper, MD, MPH, Chapel Hill, NC, Chairman
 Virginia A. Caine, MD, Indianapolis, IN Patricia Quinlisk, MD, MPH, Des Moines, IA
 Jonathan E. Fielding, MD, MPH, MBA, Los Angeles, CA David W. Fleming, MD, Seattle, WA
 William E. Halperin, MD, DrPH, MPH, Newark, NJ
 Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC King K. Holmes, MD, PhD, Seattle, WA

 John V. Rullan, MD, MPH, San Juan, PR
 Deborah Holtzman, PhD, Atlanta, GA
 William Schaffner, MD, Nashville, TN
 John K. Iglehart, Bethesda, MD
 Dennis G. Maki, MD, Madison, WI

 Anne Schuchat, MD, Atlanta, GA
 Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA

[^2]: † Information available at http://www.cdc.gov/hiv/topics/research/ prs/resources/factsheets/voices-voces.htm.

[^3]: \$ Information available at http://www.cdc.gov/hiv/topics/prev_prog/ rep/packages/pol.htm.

[^4]: * During the September 2010 WHO Regional Committee for Europe meeting, the goal of eliminating measles and rubella and prevention of CRS was changed to 2015.
 \dagger WHO/UNICEF started requesting reports for rubella and CRS in 2000.
 \$ Laboratory-confirmed CRS = clinically confirmed CRS in an infant who has a positive blood test for rubella-specific immunoglobulin M or where available, detection of rubella virus in specimens from pharynx and urine. CRS is clinically confirmed in an infant if a qualified physician detects at least two of the following complications in the infant: cataract(s), congenital glaucoma, congenital heart disease, loss of hearing, or pigmentary retinopathy, or one of those complications and one of the following: purpura, splenomegaly, microcephaly, mental retardation, meningoencephalitis, radiolucent bone disease, or jaundice that begins within 24 hours after birth.

[^5]: SAlgeria, Bangladesh, Botswana, Burundi, Cambodia, Cape Verde, Democratic Republic of Korea, Eritrea, Gambia, Ghana, Indonesia, Lesotho, Malawi, Myanmar, Rwanda, Sao Tomé, Sudan, Swaziland, Togo, United Republic of Tanzania, Vietnam, and Zambia.

[^6]: ** Available at http://www.unicef.org/supply/files/2010_Vaccine_ Projection.pdf.

[^7]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

 U: Unavailable. 一: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

 * Incidence data for reporting year 2010 is provisional.
 ${ }^{\dagger}$ Cumulative total E. ewingii cases reported for year 2010 $=10$.
 § Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

[^8]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

 U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

 * Incidence data for reporting year 2010 is provisional.
 ${ }^{\dagger}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

